2,132 research outputs found

    Natural Image Statistics for Digital Image Forensics

    Get PDF
    We describe a set of natural image statistics that are built upon two multi-scale image decompositions, the quadrature mirror filter pyramid decomposition and the local angular harmonic decomposition. These image statistics consist of first- and higher-order statistics that capture certain statistical regularities of natural images. We propose to apply these image statistics, together with classification techniques, to three problems in digital image forensics: (1) differentiating photographic images from computer-generated photorealistic images, (2) generic steganalysis; (3) rebroadcast image detection. We also apply these image statistics to the traditional art authentication for forgery detection and identification of artists in an art work. For each application we show the effectiveness of these image statistics and analyze their sensitivity and robustness

    An intelligent interactive visual database management system for Space Shuttle closeout image management

    Get PDF
    Status is given of an applications investigation on the potential for using an expert system shell for classification and retrieval of high resolution, digital, color space shuttle closeout photography. This NASA funded activity has focused on the use of integrated information technologies to intelligently classify and retrieve still imagery from a large, electronically stored collection. A space shuttle processing problem is identified, a working prototype system is described, and commercial applications are identified. A conclusion reached is that the developed system has distinct advantages over the present manual system and cost efficiencies will result as the system is implemented. Further, commercial potential exists for this integrated technology

    What makes a good picture?

    Get PDF
    Trabalho de investigação desenvolvido na Cranfield University. School of EngineeringTese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201

    Representations and representation learning for image aesthetics prediction and image enhancement

    Get PDF
    With the continual improvement in cell phone cameras and improvements in the connectivity of mobile devices, we have seen an exponential increase in the images that are captured, stored and shared on social media. For example, as of July 1st 2017 Instagram had over 715 million registered users which had posted just shy of 35 billion images. This represented approximately seven and nine-fold increase in the number of users and photos present on Instagram since 2012. Whether the images are stored on personal computers or reside on social networks (e.g. Instagram, Flickr), the sheer number of images calls for methods to determine various image properties, such as object presence or appeal, for the purpose of automatic image management and curation. One of the central problems in consumer photography centers around determining the aesthetic appeal of an image and motivates us to explore questions related to understanding aesthetic preferences, image enhancement and the possibility of using such models on devices with constrained resources. In this dissertation, we present our work on exploring representations and representation learning approaches for aesthetic inference, composition ranking and its application to image enhancement. Firstly, we discuss early representations that mainly consisted of expert features, and their possibility to enhance Convolutional Neural Networks (CNN). Secondly, we discuss the ability of resource-constrained CNNs, and the different architecture choices (inputs size and layer depth) in solving various aesthetic inference tasks: binary classification, regression, and image cropping. We show that if trained for solving fine-grained aesthetics inference, such models can rival the cropping performance of other aesthetics-based croppers, however they fall short in comparison to models trained for composition ranking. Lastly, we discuss our work on exploring and identifying the design choices in training composition ranking functions, with the goal of using them for image composition enhancement

    Modeling Visual Rhetoric and Semantics in Multimedia

    Get PDF
    Recent advances in machine learning have enabled computer vision algorithms to model complicated visual phenomena with accuracies unthinkable a mere decade ago. Their high-performance on a plethora of vision-related tasks has enabled computer vision researchers to begin to move beyond traditional visual recognition problems to tasks requiring higher-level image understanding. However, most computer vision research still focuses on describing what images, text, or other media literally portrays. In contrast, in this dissertation we focus on learning how and why such content is portrayed. Rather than viewing media for its content, we recast the problem as understanding visual communication and visual rhetoric. For example, the same content may be portrayed in different ways in order to present the story the author wishes to convey. We thus seek to model not only the content of the media, but its authorial intent and latent messaging. Understanding how and why visual content is portrayed a certain way requires understanding higher level abstract semantic concepts which are themselves latent within visual media. By latent, we mean the concept is not readily visually accessible within a single image (e.g. right vs left political bias), in contrast to explicit visual semantic concepts such as objects. Specifically, we study the problems of modeling photographic style (how professional photographers portray their subjects), understanding visual persuasion in image advertisements, modeling political bias in multimedia (image and text) news articles, and learning cross-modal semantic representations. While most past research in vision and natural language processing studies the case where visual content and paired text are highly aligned (as in the case of image captions), we target the case where each modality conveys complementary information to tell a larger story. We particularly focus on the problem of learning cross-modal representations from multimedia exhibiting weak alignment between the image and text modalities. A variety of techniques are presented which improve modeling of multimedia rhetoric in real-world data and enable more robust artificially intelligent systems

    Quarterly literature review of the remote sensing of natural resources

    Get PDF
    The Technology Application Center reviewed abstracted literature sources, and selected document data and data gathering techniques which were performed or obtained remotely from space, aircraft or groundbased stations. All of the documentation was related to remote sensing sensors or the remote sensing of the natural resources. Sensors were primarily those operating within the 10 to the minus 8 power to 1 meter wavelength band. Included are NASA Tech Briefs, ARAC Industrial Applications Reports, U.S. Navy Technical Reports, U.S. Patent reports, and other technical articles and reports

    COMPUTATIONAL MODELLING OF HUMAN AESTHETIC PREFERENCES IN THE VISUAL DOMAIN: A BRAIN-INSPIRED APPROACH

    Get PDF
    Following the rise of neuroaesthetics as a research domain, computational aesthetics has also known a regain in popularity over the past decade with many works using novel computer vision and machine learning techniques to evaluate the aesthetic value of visual information. This thesis presents a new approach where low-level features inspired from the human visual system are extracted from images to train a machine learning-based system to classify visual information depending on its aesthetics, regardless of the type of visual media. Extensive tests are developed to highlight strengths and weaknesses of such low-level features while establishing good practices in the domain of study of computational aesthetics. The aesthetic classification system is not only tested on the most widely used dataset of photographs, called AVA, on which it is trained initially, but also on other photographic datasets to evaluate the robustness of the learnt aesthetic preferences over other rating communities. The system is then assessed in terms of aesthetic classification on other types of visual media to investigate whether the learnt aesthetic preferences represent photography rules or more general aesthetic rules. The skill transfer from aesthetic classification of photos to videos demonstrates a satisfying correct classification rate of videos without any prior training on the test set created by Tzelepis et al. Moreover, the initial photograph classifier can also be used on feature films to investigate the classifier’s learnt visual preferences, due to films providing a large number of frames easily labellable. The study on aesthetic classification of videos concludes with a case study on the work by an online content creator. The classifier recognised a significantly greater percentage of aesthetically high frames in videos filmed in studios than on-the-go. The results obtained across datasets containing videos of diverse natures manifest the extent of the system’s aesthetic knowledge. To conclude, the evolution of low-level visual features is studied in popular culture such as in paintings and brand logos. The work attempts to link aesthetic preferences during contemplation tasks such as aesthetic rating of photographs with preferred low-level visual features in art creation. It questions whether favoured visual features usage varies over the life of a painter, implicitly showing a relationship with artistic expertise. Findings display significant changes in use of universally preferred features over influential vi abstract painters’ careers such an increase in cardinal lines and the colour blue; changes that were not observed in landscape painters. Regarding brand logos, only a few features evolved in a significant manner, most of them being colour-related features. Despite the incredible amount of data available online, phenomena developing over an entire life are still complicated to study. These computational experiments show that simple approaches focusing on the fundamentals instead of high-level measures allow to analyse artists’ visual preferences, as well as extract a community’s visual preferences from photos or videos while limiting impact from cultural and personal experiences
    • …
    corecore