77 research outputs found

    Modelling and Analysis for Cyber-Physical Systems: An SMT-based approach

    Get PDF

    Proceedings of the Joint Automated Reasoning Workshop and Deduktionstreffen: As part of the Vienna Summer of Logic – IJCAR 23-24 July 2014

    Get PDF
    Preface For many years the British and the German automated reasoning communities have successfully run independent series of workshops for anybody working in the area of automated reasoning. Although open to the general public they addressed in the past primarily the British and the German communities, respectively. At the occasion of the Vienna Summer of Logic the two series have a joint event in Vienna as an IJCAR workshop. In the spirit of the two series there will be only informal proceedings with abstracts of the works presented. These are collected in this document. We have tried to maintain the informal open atmosphere of the two series and have welcomed in particular research students to present their work. We have solicited for all work related to automated reasoning and its applications with a particular interest in work-in-progress and the presentation of half-baked ideas. As in the previous years, we have aimed to bring together researchers from all areas of automated reasoning in order to foster links among researchers from various disciplines; among theoreticians, implementers and users alike, and among international communities, this year not just the British and German communities

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2022, which was held during April 4-6, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 23 regular papers presented in this volume were carefully reviewed and selected from 77 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2022, which was held during April 4-6, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 23 regular papers presented in this volume were carefully reviewed and selected from 77 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems

    Uniform Substitution for Dynamic Logic with Communicating Hybrid Programs

    Full text link
    This paper introduces a uniform substitution calculus for dLCHP\mathsf{dL}_\text{CHP}, the dynamic logic of communicating hybrid programs. Uniform substitution enables parsimonious prover kernels by using axioms instead of axiom schemata. Instantiations can be recovered from a single proof rule responsible for soundness-critical instantiation checks rather than being spread across axiom schemata in side conditions. Even though communication and parallelism reasoning are notorious for necessitating subtle soundness-critical side conditions, uniform substitution when generalized to dLCHP\mathsf{dL}_\text{CHP} manages to limit and isolate their conceptual overhead. Since uniform substitution has proven to simplify the implementation of hybrid systems provers substantially, uniform substitution for dLCHP\mathsf{dL}_\text{CHP} paves the way for a parsimonious implementation of theorem provers for hybrid systems with communication and parallelism.Comment: CADE 202

    Formal verification of a real-time operating system

    Get PDF
    Errors caused by the interaction of computer systems with the physical world are hard to mitigate but errors related to the underlying software can be prevented by a more rigorous development of software code. In the context of critical systems, a failure caused by software errors could lead to consequences that are determined to be unacceptable. At the heart of a critical system, a real-time operating system is commonly found. Since the reliability of the entire system depends upon having a reliable operating system, verifying that the operating systems functions as desired is of prime interest. One solution to verify the correctness of significant properties of an existing real-time operating system microkernel (FreeRTOS) applies assisted proof checking to its formalized specification description. The experiment consists of describing real-time operating system characteristics, such as memory safety and scheduler determinism, in Separation Logic — a formal language that allows reasoning about the behaviour of the system in terms of preconditions and postconditions. Once the desired properties are defined in a formal language, a theorem can be constructed to describe the validity of such formula for the given FreeRTOS implementation. Then, by using the Coq proof assistant, a machine-checked proof that such properties hold for FreeRTOS can be carried out. By expressing safety and deterministic properties of an existing real-time operating systems and proving them correct we demonstrate that the current state-of-the-art in theorem-based formal verification, including appropriate logics and proof assistants, make it possible to provide a machine-checked proof of the specification of significant properties for FreeRTOS
    • …
    corecore