85 research outputs found

    Retrieving Soil and Vegetation Temperatures From Dual-Angle and Multipixel Satellite Observations

    Get PDF
    Land surface component temperatures (LSCTs), i.e., the temperatures of soil and vegetation, are important parameters in many applications, such as estimating evapotranspiration and monitoring droughts. However, the multiangle algorithm is affected due to different spatial resolution between nadir and oblique views. Therefore, we propose a combined retrieval algorithm that uses dual-angle and multipixel observations together. The sea and land surface temperature radiometer onboard ESA\u27s Sentinel-3 satellite allows for quasi-synchronous dual-angle observations, from which LSCTs can be retrieved using dual-angle and multipixel algorithms. The better performance of the combined algorithm is demonstrated using a sensitivity analysis based on a synthetic dataset. The spatial errors in the oblique view due to different spatial resolution can reach 4.5 K and have a large effect on the multiangle algorithm. The introduction of multipixel information in a window can reduce the effect of such spatial errors, and the retrieval results of LSCTs can be further improved by using multiangle information for a pixel. In the validation, the proposed combined algorithm performed better, with LSCT root mean squared errors of 3.09 K and 1.91 K for soil and vegetation at a grass site, respectively, and corresponding values of 3.71 K and 3.42 K at a sparse forest site, respectively. Considering that the temperature differences between components can reach 20 K, the results confirm that, in addition to a pixel-average LST, the combined retrieval algorithm can provide information on LSCTs. This article demonstrates the potential of utilizing additional information sources for better LSCT results, which makes the presented combined strategy a promising option for deriving large-scale LSCT products

    Retrieval of canopy component temperatures through Bayesian inversion of directional thermal measurements

    Get PDF
    Evapotranspiration is usually estimated in remote sensing from single temperature value representing both soil and vegetation. This surface temperature is an aggregate over multiple canopy components. The temperature of the individual components can differ significantly, introducing errors in the evapotranspiration estimations. The temperature aggregate has a high level of directionality. An inversion method is presented in this paper to retrieve four canopy component temperatures from directional brightness temperatures. The Bayesian method uses both a priori information and sensor characteristics to solve the ill-posed inversion problem. The method is tested using two case studies: 1) a sensitivity analysis, using a large forward simulated dataset, and 2) in a reality study, using two datasets of two field campaigns. The results of the sensitivity analysis show that the Bayesian approach is able to retrieve the four component temperatures from directional brightness temperatures with good success rates using multi-directional sensors (Srspectra˜0.3, Srgonio˜0.3, and SrAATSR˜0.5), and no improvement using mono-angular sensors (Sr˜1). The results of the experimental study show that the approach gives good results for high LAI values (RMSEgrass=0.50 K, RMSEwheat=0.29 K, RMSEsugar beet=0.75 K, RMSEbarley=0.67 K); but for low LAI values the results were unsatisfactory (RMSEyoung maize=2.85 K). This discrepancy was found to originate from the presence of the metallic construction of the setup. As these disturbances, were only present for two crops and were not present in the sensitivity analysis, which had a low LAI, it is concluded that using masked thermal images will eliminate this discrepanc

    Using middle-infrared reflectance for burned area detection

    Get PDF
    Tese de doutoramento, CiĂȘncias GeofĂ­sicas e da Geoinformação (Meteorologia), Universidade de Lisboa, Faculdade de CiĂȘncias, 2011A strategy is presented that allows deriving a new index for burned area discrimination over the Amazon and Cerrado regions of Brazil. The index is based on information from the near-infrared (NIR) and middle-infrared (MIR) channels of the Moderate Resolution Imaging Spectroradiometer (MODIS). A thorough review is undertaken of existing methods for retrieving MIR reflectance and an assessment is performed, using simulated and real data, about the added value obtained when using the radiative transfer equation (RTE) instead of the simplified algorithm (KR94) developed by Kaufman and Remer (1994), the most used in the context of burned area studies. It is shown that use of KR94 in tropical environments to retrieve vegetation reflectance may lead to errors that are at least of the same order of magnitude of the reflectance to be retrieved and considerably higher for large values of land surface temperature (LST) and solar zenith angle (SZA). Use of the RTE approach leads to better estimates in virtually all cases, with the exception of high values of LST and SZA, where results from KR94 are also not usable. A transformation is finally defined on the MIR/NIR reflectance space aiming to enhance the spectral information such that vegetated and burned surfaces may be effectively discriminated. The transformation is based on the difference between MIR and NIR in conjunction with the distance from a convergence point in the MIR/NIR space, representative of a totally burnt surface. The transformation allows defining a system of coordinates, one coordinate having a small scatter for pixels associated to vegetation, burned surfaces and soils containing organic matter and the other coordinate covering a wide range of values, from green and dry/stressed vegetation to burned surfaces. The new set of coordinates opens interesting perspectives to applications like drought monitoring and burned area discrimination using remote-sensed information.O coberto vegetal da superfĂ­cie da Terra tem vindo a sofrer mudanças, por vezes drĂĄsticas, que conduzem a alteraçÔes tanto na rugosidade da superfĂ­cie terrestre como no seu albedo, afectando directamente as trocas de calor sensĂ­vel e latente e de diĂłxido de carbono entre a superfĂ­cie terrestre e a atmosfera (Sellers et al., 1996). Neste contexto, as queimadas assumem um papel de extremo relevo (Nobre et al., 1991; O’Brien, 1996; Xue, 1996) na medida em que constituem uma das mais importantes fontes de alteração do coberto vegetal, resultando na destruição de florestas e de recursos naturais, libertando carbono da superfĂ­cie continental para a atmosfera (Sellers et al., 1995) e perturbando as interacçÔes biosfera-atmosfera (Levine et al., 1995; Scholes, 1995) atravĂ©s de mudanças na rugosidade do solo, na ĂĄrea foliar e noutros parĂąmetros biofĂ­sicos associados ao coberto vegetal. Ora, neste particular, a AmazĂłnia Brasileira constitui um exemplo notĂĄvel de mudanças no uso da terra e do coberto vegetal nas Ășltimas dĂ©cadas, como resultado da desflorestação induzida pelo homem bem como por causas naturais (Gedney e Valdes, 2000; Houghton, 2000; Houghton et al., 2000; Lucas et al., 2000), estimando-se que as regiĂ”es tropicais sejam responsĂĄveis por cerca de 32% da emissĂŁo global de carbono para a atmosfera (Andreae, 1991). Neste contexto, a disponibilidade de informaçÔes pormenorizadas e actualizadas sobre as distribuiçÔes espacial e temporal de queimadas e de ĂĄreas ardidas em regiĂ”es tropicais afigura-se crucial, nĂŁo sĂł para uma melhor gestĂŁo dos recursos naturais, mas tambĂ©m para estudos da quĂ­mica da atmosfera e de mudanças climĂĄticas (Zhan et al., 2002). A detecção remota constitui, neste Ăąmbito, uma ferramenta indispensĂĄvel na medida em que permite uma monitorização em tempo quase real, a qual se revela especialmente Ăștil em ĂĄreas extensas e/ou de difĂ­cil acesso afectadas pelo fogo (Pereira et al., 1997). Diversos instrumentos, tais como o Land Remote Sensing Satellite/Thematic Mapper (LANDSAT/TM) e o National Oceanic and Atmospheric Administration/Advanced Very High Resolution Radiometer (NOAA/AVHRR) tĂȘm vindo a ser extensivamente utilizados na gestĂŁo dos fogos florestais, em particular aos nĂ­veis da detecção de focos de incĂȘndio e da monitorização de ĂĄreas queimadas. Mais recentemente, o instrumento VEGETATION a bordo do Satellite Pour l'Observation de la Terre (SPOT) tem vindo a ser utilizado com sucesso na monitorização de fogos. Finalmente, sĂŁo de referir os sensores da sĂ©rie Along Track Scanning Radiometer (ATSR) para os quais tĂȘm vindo a ser desenvolvidos algoritmos de identificação de focos de incĂȘndio, e ainda o sensor Moderate Resolution Imaging Spectroradiometer (MODIS) que tem vindo a demonstrar capacidades Ăłptimas no que respeita Ă  observação global de fogos, plumas e ĂĄreas queimadas. Neste contexto, os mĂ©todos actuais de detecção de ĂĄreas ardidas atravĂ©s da detecção remota tĂȘm vindo a dar prioridade Ă  utilização das regiĂ”es do vermelho (0.64 ÎŒm) e infravermelho-prĂłximo (0.84 ÎŒm) do espectro eletromagnĂ©tico. No entanto, tanto a regiĂŁo do vermelho quanto a do infravermelho-prĂłximo apresentam a desvantagem de serem sensĂ­veis Ă  presença de aerossĂłis na atmosfera (Fraser e Kaufman, 1985; Holben et. al., 1986). Desta forma, em regiĂ”es tropicais como a AmazĂłnia, onde existem grandes camadas de fumo devido Ă  queima de biomassa, a utlização destas duas regiĂ”es do espectro eletromagnĂ©tico torna-se insatisfatĂłria para a detecção de ĂĄreas ardidas. Por outro lado, a regiĂŁo do infravermelho mĂ©dio (3.7 – 3.9 ÎŒm) tem a vantagem de nĂŁo ser sensĂ­vel Ă  presença da maior parte dos aerossĂłis, exceptuando a poeira (Kaufman e Remer, 1994) mostrando-se, ao mesmo tempo, sensĂ­vel a mudanças na vegetação devido Ă  absorção de ĂĄgua lĂ­quida. Com efeito, estudos acerca dos efeitos do vapor de ĂĄgua na atenuação do espectro eletromagnĂ©tico demonstraram que a regiĂŁo do infravermelho mĂ©dio Ă© uma das Ășnicas regiĂ”es com relativamente pouca atenuação (Kerber e Schut, 1986). Acresce que a regiĂŁo do infravermelho mĂ©dio apresenta uma baixa variação da irradiĂąncia solar (Lean, 1991), tendo-se ainda que a influĂȘncia das incertezas da emissividade na estimativa da temperatura da superfĂ­cie Ă© pequena quando comparada com outras regiĂ”es tĂ©rmicas tais como as de 10.5 e 11.5 ÎŒm (Salysbury e D’Aria, 1994). A utilização da radiĂąncia medida atravĂ©s de satĂ©lites na regiĂŁo do infravermelho mĂ©dio Ă©, no entanto, dificultada pelo facto de esta ser afectada tanto pelo fluxo tĂ©rmico quanto pelo fluxo solar, contendo, desta forma, duas componentes, uma emitida e outra reflectida, tendo-se que a componente reflectiva contĂ©m os fluxos tĂ©rmico e solar reflectidos pela atmosfera e pela superfĂ­cie enquanto que as emissĂ”es tĂ©rmicas sĂŁo oriundas da atmosfera e da superfĂ­cie. Ora, a componente solar reflectida Ă© de especial interesse para a detecção de ĂĄreas ardidas pelo que se torna necessĂĄrio isolĂĄ-la do sinal total medido pelo sensor. Devido Ă  ambiguidade deste sinal, a distinção dos efeitos da reflectĂąncia e da temperatura torna-se uma tarefa muito complexa, verificando-se que os mĂ©todos em que se nĂŁo assume nenhuma simplificação, levando-se, portanto, em consideração todos os constituintes do sinal do infravermelho mĂ©dio se tornam complexos e difĂ­ceis de serem aplicados na prĂĄtica, na medida em que requerem dados auxiliares (e.g. perfis atmosfĂ©ricos) e ferramentas computacionais (e.g. modelos de tranferĂȘncia radiativa). Kaufman e Remer (1994) desenvolveram um mĂ©todo simples para estimar a reflectĂąncia do infravermelho mĂ©dio o qual assenta em diversas hipĂłteses simplificadoras. Apesar do objectivo primĂĄrio que levou ao desenvolvimento do mĂ©todo ser a identificação de ĂĄreas cobertas por vegetação densa e escura em regiĂ”es temperadas, este mĂ©todo tem sido lagarmente utilizado nos estudos acerca da discriminação de ĂĄreas queimadas, algumas das vezes em regiĂ”es tropicais (Roy et al., 1999; Barbosa et al., 1999; Pereira, 1999). Na literatura nĂŁo existe, no entanto, nenhum estudo acerca da exactidĂŁo e precisĂŁo deste mĂ©todo quando aplicado com o objectivo de detectar ĂĄreas ardidas, em especial em regiĂ”es tropicais. Neste sentido, no presente trabalho procedeu-se a um estudo de viabilidade do mĂ©todo proposto por Kaufman e Remer (1994) em simultĂąneo com a anĂĄlise da equação de tranferĂȘncia radiativa na regiĂŁo do infravermelho mĂ©dio, tendo sido realizados testes de sensibilidade dos algoritmos em relação aos erros nos perfis atmosfĂ©ricos, ruĂ­do do sensor e erros nas estimativas da temperatura da superfĂ­cie. Para tal recorreu-se ao modelo de transferĂȘncia radiativa Moderate Spectral Resolution Atmospheric Transmittance and Radiance Code (MODTRAN), dando-se especial atenção ao caso do sensor MODIS. Os resultados demonstraram que a utilização do mĂ©todo proposto por Kaufman e Remer (1994) em regiĂ”es tropicais para a estimativa da reflectĂąncia no infravermelho mĂ©dio, leva a erros que sĂŁo pelo menos da mesma ordem de magnitude do parĂąmetro estimado e, em alguns casos, muito maior, quando ocorre a combinação de altas temperaturas da superfĂ­cie terrestre com baixos Ăąngulos zenitais solares. A utilização da equação de transferĂȘncia radiativa mostrouse uma boa alternativa, desde que estejam disponĂ­veis dados acerca da temperatura da superfĂ­ce terrestre assim como dos perfis atmosfĂ©ricos. Entretanto, nas regiĂ”es onde ocorrem altos valores de temperatura da superfĂ­cie terrestre e baixos Ăąngulos zenitais solares, quaisquer dos dois mĂ©todos se mostra pouco utilizĂĄvel, jĂĄ que nesta regiĂŁo a estimativa da reflectĂąncia constitui um problema mal-posto. Em paralelo, utilizaram-se informaçÔes sobre aerossĂłis de queimada para efectuar simulaçÔes do MODTRAN que permitiram avaliar a reposta do canal do infravermelho-mĂ©dio Ă  este tipo de perturbação do sinal, muito comum na AmazĂłnia Brasileira. A fim de tornar o estudo o mais realĂ­stico possĂ­vel, procedeu-se Ă  coleta de material resultante de queimadas na regiĂŁo AmazĂłnica, mais especificamente em Alta Floresta, Mato Grosso, Brasil. Estes resultado foram entĂŁo integrados nos estudos em questĂŁo, possibilitando a caracterização espectral das ĂĄreas ardidas. Com base nos resultados obtido definiu-se uma tranformação no espaço do infravermelho prĂłximo e mĂ©dio com o objetivo de maximizar a informação espectral de forma a que as superfĂ­cies vegetadas pudessem ser efectivamente discriminadas e as ĂĄreas ardidas identificadas. A tranformação baseia-se na diferença entre a reflectĂąncia nos infravermelhos prĂłximo e mĂ©dio, em conjunto com a distĂąncia a um ponto de convergĂȘncia no espaço espectral dos infravermelhos prĂłximo e mĂ©dio, ponto esse representativo de uma ĂĄrea completamente ardida. A tranformação permitiu a definição de um novo sistema de coordenadas, o qual provou ser bastante Ăștil no que diz respeito ĂĄ identificação de ĂĄreas ardidas. Este novo espaço de coordenadas constitui uma inovação na ĂĄrea dos estudos de queimadas, jĂĄ que permite ao mesmo tempo definir dois tipos de Ă­ndices, o primeiro dos quais identifica superfĂ­cies que contĂ©m ou nĂŁo biomassa e o segundo identifica, de entre as superfĂ­cies que contĂȘm biomassa, a quantidade de ĂĄgua presente, podendo variar de vegetação verde (abundĂąncia de ĂĄgua) atĂ© ĂĄreas ardidas (ausĂȘncia de ĂĄgua). AlĂ©m de distiguir ĂĄreas ardidas, os Ă­ndices desenvolvidos podem ainda ser aplicados em outros casos como, por exemplo, estudos de estresse hĂ­drico e secas.DSA/INPE; Portuguese Foundation of Science and Technology (Fundação para a CiĂȘncia e Tecnologia / FCT)(SFRH/BD/21650/2005

    A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques

    Get PDF
    Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water’s surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD)

    Half a century of satellite remote sensing of sea-surface temperature

    Get PDF
    Sea-surface temperature (SST) was one of the first ocean variables to be studied from earth observation satellites. Pioneering images from infrared scanning radiometers revealed the complexity of the surface temperature fields, but these were derived from radiance measurements at orbital heights and included the effects of the intervening atmosphere. Corrections for the effects of the atmosphere to make quantitative estimates of the SST became possible when radiometers with multiple infrared channels were deployed in 1979. At the same time, imaging microwave radiometers with SST capabilities were also flown. Since then, SST has been derived from infrared and microwave radiometers on polar orbiting satellites and from infrared radiometers on geostationary spacecraft. As the performances of satellite radiometers and SST retrieval algorithms improved, accurate, global, high resolution, frequently sampled SST fields became fundamental to many research and operational activities. Here we provide an overview of the physics of the derivation of SST and the history of the development of satellite instruments over half a century. As demonstrated accuracies increased, they stimulated scientific research into the oceans, the coupled ocean-atmosphere system and the climate. We provide brief overviews of the development of some applications, including the feasibility of generating Climate Data Records. We summarize the important role of the Group for High Resolution SST (GHRSST) in providing a forum for scientists and operational practitioners to discuss problems and results, and to help coordinate activities world-wide, including alignment of data formatting and protocols and research. The challenges of burgeoning data volumes, data distribution and analysis have benefited from simultaneous progress in computing power, high capacity storage, and communications over the Internet, so we summarize the development and current capabilities of data archives. We conclude with an outlook of developments anticipated in the next decade or so

    The application of the surface energy balance system model to estimate evapotranspiration in South Africa

    Get PDF
    Includes abstract.Includes bibliographical references.In a water scarce country like South Africa with a number of large consumers of water, it is important to estimate evapotranspiration (ET) with a high degree of accuracy. This is especially important in the semi-arid regions where there is an increasing demand for water and a scarce supply thereof. ET varies regionally and seasonally, so knowledge about ET is fundamental to save and secure water for different uses, and to guarantee that water is distributed to water consumers in a sustainable manner. Models to estimate ET have been developed using a combination of meteorological and remote sensing data inputs. In this study, the pre-packaged Surface Energy Balance System (SEBS) model was used for the first time in the South African environment alongside MODerate Resolution Imaging Spectroradiometer (MODIS) satellite data and validated with eddy covariance data measured in a large apple orchard (11 ha), in the Piketberg area of the Western Cape. Due to the relative infancy of research in this field in South Africa, SEBS is an attractive model choice as it is available as open-source freeware. The model was found to underestimate the sensible heat flux through setting it at the wet limit. Daily ET measured by the eddy covariance system represented 55 to 96% of the SEBS estimate, an overestimation of daily ET. The consistent underestimation of the sensible heat flux was ascribed to sensitivities to the land surface air temperature gradient, the choice of fractional vegetation cover formula as well as the height of the vegetation canopy (3.2 m) relative to weather station reference height (2 m). The methodology was adapted based on the above findings and was applied to a second study area (quaternary catchment P10A, near Grahamstown, Eastern Cape) where two different approaches for deriving surface roughness are applied. It was again demonstrated that the sensible heat flux is sensitive to surface roughness in combination with land surface air temperature gradient and again, the overestimation of daily ET persisted (actual ET being greater than reference ET). It was concluded that in complex environments, at coarse resolution, it is not possible to adequately describe the remote sensing derived input parameters at the correct level of accuracy and at the spatial resolution required for the accurate estimation of the sensible heat flux

    Remote sensing of energy and water fluxes over Volta Savannah catchments in West Africa

    Get PDF
    The deterioration of the West African savannah in the last three decades is believed to be closely linked with about 0.5 C rise in temperature leading to evaporation losses and declining levels of the Volta Lake in Ghana. Although hydrological models can be used to predict climate change impacts on the regional hydrology, spatially-observed ground data needed for this purpose are largely unavailable. This thesis seeks to address this problem by developing improved methods for estimating energy and water fluxes (e.g. latent heat [ET]) from remotely sensed data and to demonstrate how these may be used to parameterize hydrological models. The first part of the thesis examines the potential of the Penman-Monteith method to estimate local-scale ET using groundbased hydrometeorological observations, vegetation coefficients and environmental data. The model results were compared with pan observations, scintillometer (eddy correlation) measurements and the Thomthwaite empirical method. The Penman- Monteith model produced better evaporation estimates (~3.90 mm day(^-1) for the Tamale district) than its counterpart methods. The Thomthwaite, for example, overestimated predictions by 5.0-11.0 mm day(^-1). Up-scaling on a monthly time scale and parameterization of the Grindley soil moisture balance model with the Thomthwaite and Penman-Monteith data, however, produced similar estimates of actual evaporation and soil moisture, which correlated strongly (R(^2) = 0.95) with water balance estimates. To improve ET estimation at the regional-scale, the second part of the thesis develops spatial models through energy balance modelling and data up-scaling methods, driven by radiometric measurements from recent satellite sensors such as the Landsat ETM+, MODIS and ENVISAT-AATSR. The results were validated using estimates from the Penman-Monteith method, field observations, detailed satellite measurements and published data. It was realised that the MODIS sensor is a more useful source of energy and water balance parameters than AA TSR. For example, stronger correlations were found between MODIS estimates of ET and other energy balance variables such as NDVI, surface temperature and net radiation (R(^2) = 0.67-0.73) compared with AATSR estimates (R(^2) = 0.31-0.40). There was also a good spatial correlation between MODIS and Landsat ETM+ results (R(^2) = 0.71), but poor correlations were found between AATSR and Landsat data (R(^2) = 0.0-0.13), which may be explained by differences in instrument calibration. The results further showed that ET may be underestimated with deviations of ~2.0 mm day 1 when MODIS/AATSR measurements are validated against point observations because of spatial mismatch. The final part of the thesis demonstrates the application of the ET model for predicting runoff (Q) using a simplified version of the regional water balance equation. This is followed byanalysis of flow sensitivity to declining scenarios of biomass volume. The results showed the absence of Q for >90% of the study area during the dry season due largely to crude model approximation and lack of rainfall data, which makes model testing during the wet season important. Runoff prediction may be improved if spatial estimates of rainfall, ET and geographical data (e.g. land-use/cover maps, soil & geology maps and DEM) could be routinely derived from satellite imagery

    A Review of Current Methodologies for Regional Evapotranspiration Estimation from Remotely Sensed Data

    Get PDF
    An overview of the commonly applied evapotranspiration (ET) models using remotely sensed data is given to provide insight into the estimation of ET on a regional scale from satellite data. Generally, these models vary greatly in inputs, main assumptions and accuracy of results, etc. Besides the generally used remotely sensed multi-spectral data from visible to thermal infrared bands, most remotely sensed ET models, from simplified equations models to the more complex physically based two-source energy balance models, must rely to a certain degree on ground-based auxiliary measurements in order to derive the turbulent heat fluxes on a regional scale. We discuss the main inputs, assumptions, theories, advantages and drawbacks of each model. Moreover, approaches to the extrapolation of instantaneous ET to the daily values are also briefly presented. In the final part, both associated problems and future trends regarding these remotely sensed ET models were analyzed to objectively show the limitations and promising aspects of the estimation of regional ET based on remotely sensed data and ground-based measurements
    • 

    corecore