1,507 research outputs found

    Symbiotic Organisms Search Algorithm: theory, recent advances and applications

    Get PDF
    The symbiotic organisms search algorithm is a very promising recent metaheuristic algorithm. It has received a plethora of attention from all areas of numerical optimization research, as well as engineering design practices. it has since undergone several modifications, either in the form of hybridization or as some other improved variants of the original algorithm. However, despite all the remarkable achievements and rapidly expanding body of literature regarding the symbiotic organisms search algorithm within its short appearance in the field of swarm intelligence optimization techniques, there has been no collective and comprehensive study on the success of the various implementations of this algorithm. As a way forward, this paper provides an overview of the research conducted on symbiotic organisms search algorithms from inception to the time of writing, in the form of details of various application scenarios with variants and hybrid implementations, and suggestions for future research directions

    An Adaptive Fuzzy Symbiotic Organisms Search Algorithm and Its Applications

    Get PDF
    This paper discusses the development of a Symbiotic Organisms Search Algorithm (SOS) variant, called Adaptive Fuzzy SOS (FSOS). Like SOS, FSOS exploits three types of symbiosis operators namely mutualism, commensalism, and parasitism in order to undertake the search process. Unlike SOS, FSOS is able to adaptively select a single or any combination of mutualism, commensalism, and parasitism update operator(s) as the search progresses based on the current search status controlled by their individual probabilities via the fuzzy decision-making. To validate its performance, we have evaluated FSOS to solve 23 benchmark functions and take a t-way test generation as our case study. Experimental results demonstrate that FSOS exhibits competitive performance against its predecessor (SOS) and other competing metaheuristic algorithms

    Adaptive Approaches Towards Better GA Performance in Dynamic Fitness Landscapes

    Get PDF
    We review different techniques for improving GA performance. By analysing the fitness landscape, a correlation measure between parents and offspring can be provided, and we can estimate effectively which genetic operator to use in the GA for a given fitness landscape. The response to selection equation further tells us how well the GA will do, and combining the two approaches gives us a powerful tool to automatically ensure the selection of the right parameter settings for a given problem. In dynamic environments the fitness landscape changes over time, and the evolved systems should be able to adapt to such changes. By introducing evolvable mutation rates and evolvable fitness formulae, we obtain such systems. The systems are shown to be able to adapt to both internal and external constraints and changes

    Weight optimization of steel lattice transmission towers based on Differential Evolution and machine learning classification technique

    Get PDF
    Transmission towers are tall structures used to support overhead power lines. They play an important role in the electrical grids. There are several types of transmission towers in which lattice towers are the most common type. Designing steel lattice transmission towers is a challenging task for structural engineers due to a large number of members. Therefore, discovering effective ways to design lattice towers has attracted the interest of researchers. This paper presents a method that integrates Differential Evolution (DE), a powerful optimization algorithm, and a machine learning classification model to minimize the weight of steel lattice towers. A classification model based on the Adaptive Boosting algorithm is developed in order to eliminate unpromising candidates during the optimization process. A feature handling technique is also introduced to improve the model quality. An illustrated example of a 160-bar tower is conducted to demonstrate the efficiency of the proposed method. The results show that the application of the Adaptive Boosting model saves about 38% of the structural analyses. As a result, the proposed method is 1.5 times faster than the original DE algorithm. In comparison with other algorithms, the proposed method obtains the same optimal weight with the least number of structural analyses

    A New Optimization Algorithm Based on Search and Rescue Operations

    Full text link
    [EN] In this paper, a new optimization algorithm called the search and rescue optimization algorithm (SAR) is proposed for solving single-objective continuous optimization problems. SAR is inspired by the explorations carried out by humans during search and rescue operations. The performance of SAR was evaluated on fifty-five optimization functions including a set of classic benchmark functions and a set of modern CEC 2013 benchmark functions from the literature. The obtained results were compared with twelve optimization algorithms including well-known optimization algorithms, recent variants of GA, DE, CMA-ES, and PSO, and recent metaheuristic algorithms. The Wilcoxon signed-rank test was used for some of the comparisons, and the convergence behavior of SAR was investigated. The statistical results indicated SAR is highly competitive with the compared algorithms. Also, in order to evaluate the application of SAR on real-world optimization problems, it was applied to three engineering design problems, and the results revealed that SAR is able to find more accurate solutions with fewer function evaluations in comparison with the other existing algorithms. Thus, the proposed algorithm can be considered an efficient optimization method for real-world optimization problems.This study was partially supported by the Spanish Research Project (nos. TIN2016-80856-R and TIN2015-65515-C4-1-R).Shabani, A.; Asgarian, B.; Gharebaghi, SA.; Salido Gregorio, MA.; Giret Boggino, AS. (2019). A New Optimization Algorithm Based on Search and Rescue Operations. Mathematical Problems in Engineering. 2019:1-23. https://doi.org/10.1155/2019/2482543S1232019Bianchi, L., Dorigo, M., Gambardella, L. M., & Gutjahr, W. J. (2008). A survey on metaheuristics for stochastic combinatorial optimization. Natural Computing, 8(2), 239-287. doi:10.1007/s11047-008-9098-4Holland, J. H. (1992). Genetic Algorithms. Scientific American, 267(1), 66-72. doi:10.1038/scientificamerican0792-66Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1), 29-41. doi:10.1109/3477.484436Manjarres, D., Landa-Torres, I., Gil-Lopez, S., Del Ser, J., Bilbao, M. N., Salcedo-Sanz, S., & Geem, Z. W. (2013). A survey on applications of the harmony search algorithm. Engineering Applications of Artificial Intelligence, 26(8), 1818-1831. doi:10.1016/j.engappai.2013.05.008Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga, N. (2012). A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 42(1), 21-57. doi:10.1007/s10462-012-9328-0Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303-315. doi:10.1016/j.cad.2010.12.015Zhang, C., Lin, Q., Gao, L., & Li, X. (2015). Backtracking Search Algorithm with three constraint handling methods for constrained optimization problems. Expert Systems with Applications, 42(21), 7831-7845. doi:10.1016/j.eswa.2015.05.050Yang, X. S. (2010). Firefly algorithm, stochastic test functions and design optimisation. International Journal of Bio-Inspired Computation, 2(2), 78. doi:10.1504/ijbic.2010.032124Punnathanam, V., & Kotecha, P. (2016). Yin-Yang-pair Optimization: A novel lightweight optimization algorithm. Engineering Applications of Artificial Intelligence, 54, 62-79. doi:10.1016/j.engappai.2016.04.004Zhao, C., Wu, C., Chai, J., Wang, X., Yang, X., Lee, J.-M., & Kim, M. J. (2017). Decomposition-based multi-objective firefly algorithm for RFID network planning with uncertainty. Applied Soft Computing, 55, 549-564. doi:10.1016/j.asoc.2017.02.009Zhao, C., Wu, C., Wang, X., Ling, B. W.-K., Teo, K. L., Lee, J.-M., & Jung, K.-H. (2017). Maximizing lifetime of a wireless sensor network via joint optimizing sink placement and sensor-to-sink routing. Applied Mathematical Modelling, 49, 319-337. doi:10.1016/j.apm.2017.05.001Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67-82. doi:10.1109/4235.585893Simon, D. (2008). Biogeography-Based Optimization. IEEE Transactions on Evolutionary Computation, 12(6), 702-713. doi:10.1109/tevc.2008.919004Garg, H. (2015). An efficient biogeography based optimization algorithm for solving reliability optimization problems. Swarm and Evolutionary Computation, 24, 1-10. doi:10.1016/j.swevo.2015.05.001Storn, R., & Price, K. (1997). Journal of Global Optimization, 11(4), 341-359. doi:10.1023/a:1008202821328Das, S., Mullick, S. S., & Suganthan, P. N. (2016). Recent advances in differential evolution – An updated survey. Swarm and Evolutionary Computation, 27, 1-30. doi:10.1016/j.swevo.2016.01.004Couzin, I. D., Krause, J., Franks, N. R., & Levin, S. A. (2005). Effective leadership and decision-making in animal groups on the move. Nature, 433(7025), 513-516. doi:10.1038/nature03236Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: A new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831-4845. doi:10.1016/j.cnsns.2012.05.010Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering Software, 69, 46-61. doi:10.1016/j.advengsoft.2013.12.007Erol, O. K., & Eksin, I. (2006). A new optimization method: Big Bang–Big Crunch. Advances in Engineering Software, 37(2), 106-111. doi:10.1016/j.advengsoft.2005.04.005Kaveh, A., & Mahdavi, V. R. (2014). Colliding bodies optimization: A novel meta-heuristic method. Computers & Structures, 139, 18-27. doi:10.1016/j.compstruc.2014.04.005Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: A Gravitational Search Algorithm. Information Sciences, 179(13), 2232-2248. doi:10.1016/j.ins.2009.03.004Zheng, Y.-J. (2015). Water wave optimization: A new nature-inspired metaheuristic. Computers & Operations Research, 55, 1-11. doi:10.1016/j.cor.2014.10.008Kaveh, A., & Khayatazad, M. (2012). A new meta-heuristic method: Ray Optimization. Computers & Structures, 112-113, 283-294. doi:10.1016/j.compstruc.2012.09.003Glover, F. (1989). Tabu Search—Part I. ORSA Journal on Computing, 1(3), 190-206. doi:10.1287/ijoc.1.3.190Chiang, H.-P., Chou, Y.-H., Chiu, C.-H., Kuo, S.-Y., & Huang, Y.-M. (2013). A quantum-inspired Tabu search algorithm for solving combinatorial optimization problems. Soft Computing, 18(9), 1771-1781. doi:10.1007/s00500-013-1203-7Mousavirad, S. J., & Ebrahimpour-Komleh, H. (2017). Human mental search: a new population-based metaheuristic optimization algorithm. Applied Intelligence, 47(3), 850-887. doi:10.1007/s10489-017-0903-6Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459-471. doi:10.1007/s10898-007-9149-xRao, R. V., Savsani, V. J., & Vakharia, D. P. (2012). Teaching–Learning-Based Optimization: An optimization method for continuous non-linear large scale problems. Information Sciences, 183(1), 1-15. doi:10.1016/j.ins.2011.08.006Digalakis, J. G., & Margaritis, K. G. (2001). On benchmarking functions for genetic algorithms. International Journal of Computer Mathematics, 77(4), 481-506. doi:10.1080/00207160108805080Karaboga, D., & Akay, B. (2009). A comparative study of Artificial Bee Colony algorithm. Applied Mathematics and Computation, 214(1), 108-132. doi:10.1016/j.amc.2009.03.090Lim, T. Y., Al-Betar, M. A., & Khader, A. T. (2015). Adaptive pair bonds in genetic algorithm: An application to real-parameter optimization. Applied Mathematics and Computation, 252, 503-519. doi:10.1016/j.amc.2014.12.030Fleury, C., & Braibant, V. (1986). Structural optimization: A new dual method using mixed variables. International Journal for Numerical Methods in Engineering, 23(3), 409-428. doi:10.1002/nme.1620230307Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3-18. doi:10.1016/j.swevo.2011.02.002Gandomi, A. H., Yang, X.-S., & Alavi, A. H. (2011). Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17-35. doi:10.1007/s00366-011-0241-yWang, G. G. (2003). Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points. Journal of Mechanical Design, 125(2), 210-220. doi:10.1115/1.1561044Cheng, M.-Y., & Prayogo, D. (2014). Symbiotic Organisms Search: A new metaheuristic optimization algorithm. Computers & Structures, 139, 98-112. doi:10.1016/j.compstruc.2014.03.007CHICKERMANE, H., & GEA, H. C. (1996). STRUCTURAL OPTIMIZATION USING A NEW LOCAL APPROXIMATION METHOD. International Journal for Numerical Methods in Engineering, 39(5), 829-846. doi:10.1002/(sici)1097-0207(19960315)39:53.0.co;2-uChou, J.-S., & Ngo, N.-T. (2016). Modified firefly algorithm for multidimensional optimization in structural design problems. Structural and Multidisciplinary Optimization, 55(6), 2013-2028. doi:10.1007/s00158-016-1624-xSonmez, M. (2011). Artificial Bee Colony algorithm for optimization of truss structures. Applied Soft Computing, 11(2), 2406-2418. doi:10.1016/j.asoc.2010.09.003Degertekin, S. O. (2012). Improved harmony search algorithms for sizing optimization of truss structures. Computers & Structures, 92-93, 229-241. doi:10.1016/j.compstruc.2011.10.022Degertekin, S. O., & Hayalioglu, M. S. (2013). Sizing truss structures using teaching-learning-based optimization. Computers & Structures, 119, 177-188. doi:10.1016/j.compstruc.2012.12.011Talatahari, S., Kheirollahi, M., Farahmandpour, C., & Gandomi, A. H. (2012). A multi-stage particle swarm for optimum design of truss structures. Neural Computing and Applications, 23(5), 1297-1309. doi:10.1007/s00521-012-1072-5Kaveh, A., Bakhshpoori, T., & Afshari, E. (2014). An efficient hybrid Particle Swarm and Swallow Swarm Optimization algorithm. Computers & Structures, 143, 40-59. doi:10.1016/j.compstruc.2014.07.012Kaveh, A., & Bakhshpoori, T. (2016). A new metaheuristic for continuous structural optimization: water evaporation optimization. Structural and Multidisciplinary Optimization, 54(1), 23-43. doi:10.1007/s00158-015-1396-8Jalili, S., & Hosseinzadeh, Y. (2015). A Cultural Algorithm for Optimal Design of Truss Structures. Latin American Journal of Solids and Structures, 12(9), 1721-1747. doi:10.1590/1679-7825154

    A hybrid success history-based adaptive differential evolution and manta ray foraging optimization for multi-objective truss optimization problems

    Get PDF
    In this paper, a hybrid multi-objective metaheuristic algorithm based on the manta ray foraging optimization (MRFO) and the success history-based parameter adaptive differential evolution (SHADE) is developed to solve multi-objective truss optimization problems, called MO-SHADE-MRFO. SHADE is a variant of differential evolution with high performance in solving optimization problems, and MRFO is a novel metaheuristic algorithm inspired from the behavior of manta rays. In the proposed algorithm, the updating mechanism of MRFO is embedded into the SHADE, to enhance global convergence of SHADE for multi-objective truss optimization problems. The design problem is to minimize both structural mass and compliance subjected to stress constraints. Six benchmark truss optimization problems, including 10-bar, 25-bar, 37-bar, 120-bar, 200-bar and 942-bar trusses, are utilized to test the effectiveness of the proposed algorithm. The performance of the proposed algorithm is compared with nine state-of-the-art algorithms, in terms of metrics including hypervolume, inverted generational distance, and spacing-to-extent. The experiment results demonstrate that the proposed algorithm can obtain the best statistical values of metrics and the lowest standard deviation values in most test problems, which is more accurate than the compared algorithms. The Pareto solutions obtained by the proposed algorithm are well-distributed and smooth in each problem
    • …
    corecore