513 research outputs found

    A Novel Frequency Synchronization Algorithm and its Cramer Rao Bound in Practical UWB Environment for MB-OFDM Systems

    Get PDF
    This paper presents an efficient time-domain coarse frequency offset (FO) synchronizer (TCFS) for multi-band orthogonal frequency division multiplexing (MB-OFDM) systems effective for practical ultra-wideband (UWB) environment. The proposed algorithm derives its estimates based on phase differences in the received subcarrier signals of several successive OFDM symbols in the preamble. We consider different carrier FOs and different channel responses in different bands to keep the analysis and simulation compatible for practical multiband UWB scenario. Performance of the algorithm is studied by means of bit error rate (BER) analysis of MBOFDM system. We derive the Cramer Rao lower bound (CRLB) of the estimation error variance and compare it with the simulated error variance both in additive white Gaussian noise and UWB channel model (CM) environments, CM1-CM4. Both analysis and simulation show that TCFS can estimate coarse carrier FO more efficiently in UWB fading channels for MB-OFDM applications compared to the other reported results in literature. Also, computational complexity of the proposed algorithm is analyzed for its usability evaluation

    Enhancing MB-OFDM throughput with dual circular 32-QAM

    Get PDF
    Quadrature Phase Shift Keying (QPSK) and Dual Carrier Modulation (DCM) are currently used as the modulation schemes for Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) in the ECMA-368 defined Ultra-Wideband (UWB) radio platform. ECMA-368 has been chosen as the physical radio platform for many systems including Wireless USB (W-USB), Bluetooth 3.0 and Wireless HDMI; hence ECMA-368 is an important issue to consumer electronics and the users experience of these products. To enable the transport of high-rate USB, ECMA-368 offers up to 480 Mb/s instantaneous bit rate to the Medium Access Control (MAC) layer, but depending on radio channel conditions dropped packets unfortunately result in a lower throughput. This paper presents an alternative high data rate modulation scheme that fits within the configuration of the current standard increasing system throughput by achieving 600 Mb/s (reliable to 3.1 meters) thus maintaining the high rate USB throughput even with a moderate level of dropped packets. The modulation system is termed Dual Circular 32-QAM (DC 32-QAM). The system performance for DC 32-QAM modulation is presented and compared with 16-QAM and DCM1

    Personal area technologies for internetworked services

    Get PDF

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Synchronization Technique for OFDM-Based UWB System

    Get PDF

    Ultra-Wideband Technology: Characteristcs, Applications and Challenges

    Full text link
    Ultra-wideband (UWB) technology is a wireless communication technology designed for short-range applications. It is characterized by its ability to generate and transmit radio-frequency energy over an extensive frequency range. This paper provides an overview of UWB technology including its definition, two representative schemes and some key characteristics distinguished from other types of communication. Besides, this paper also analyses some widely used applications of UWB technology and highlights some of the challenges associated with implementing UWB in real-world scenarios. Furthermore, this paper expands upon UWB technology to encompass terahertz technology, providing an overview of the current status of terahertz communication, and conducting an analysis of the advantages, challenges, and certain corresponding solutions pertaining to ultra-wideband THz communication

    Sub-sampled OFDM based sub-band ultra-wideband system

    Get PDF
    In sub-band ultra-wideband (SUWB) systems, the use of spreading codes in conjunction with sub-banding enables energy efficient reduced sampling rate receiver designs. In this work, the orthogonal frequency division multiplexing (OFDM) technique is proposed for SUWB systems as a means to mitigate the multipath fading effects of the channel. The OFDM demodulation performed at the sub-sampled rate with reduced number of discrete Fourier transform (DFT) points provides scope for low power receiver implementations. Moreover, OFDM improves the flexibility as bandwidth resources can be allocated with improved granularity at integral multiples of the OFDM sub-channel bandwidth. The requisite correlation properties of the spreading codes is relaxed in the proposed OFDM-SUWB system and more number of spreading codes can be used when compared to the existing SUWB system. Also, a simple channel estimation method exploiting the low complexity advantage of the inherent spreading code based receiver is proposed. Simulation results in terms of the bit error rate (BER) performance are presented over the IEEE 802.15.4a channel models and also comparisons with the multi-band OFDM (MB-OFDM) system are made demonstrating the usefulness of the proposed scheme

    Spectrum control and iterative coding for high capacity multiband OFDM

    Get PDF
    The emergence of Multiband Orthogonal Frequency Division Modulation (MB-OFDM) as an ultra-wideband (UWB) technology injected new optimism in the market through realistic commercial implementation, while keeping promise of high data rates intact. However, it has also brought with it host of issues, some of which are addressed in this thesis. The thesis primarily focuses on the two issues of spectrum control and user capacity for the system currently proposed by the Multiband OFDM Alliance (MBOA). By showing that line spectra are still an issue for new modulation scheme (MB-OFDM), it proposes a mechanism of scrambling the data with an increased length linear feedback shift register (compared to the current proposal), a new set of seeds, and random phase reversion for the removal of line spectra. Following this, the thesis considers a technique for increasing the user capacity of the current MB-OFDM system to meet the needs of future wireless systems, through an adaptive multiuser synchronous coded transmission scheme. This involves real time iterative generation of user codes, which are generated over time and frequency leading to increased capacity. With the assumption of complete channel state information (CSI) at the receiver, an iterative MMSE algorithm is used which involves replacement of each users s signature with its normalized MMSE filter function allowing the overall Total Squared Correlation (TSC) of the system to decrease until the algorithm converges to a fixed set of signature vectors. This allows the system to be overloaded and user\u27s codes to be quasi-orthogonal. Simulation results show that for code of length nine (spread over three frequency bands and three time slots), ten users can be accommodated for a given QoS and with addition of single frequency sub-band which allows the code length to increase from nine to twelve (four frequency sub-bands and three time slots), fourteen users with nearly same QoS can be accommodated in the system. This communication is overlooked by a central controller with necessary functionalities to facilitate the process. The thesis essentially considers the uplink from transmitting devices to this central controller. Furthermore, analysis of this coded transmission in presence of interference is carried to display the robustness of this scheme through its adaptation by incorporating knowledge of existing Narrowband (NB) Interference for computing the codes. This allows operation of sub-band coexisting with NB interference without substantial degradation given reasonable interference energy (SIR=-l0dB and -5dB considered). Finally, the thesis looks at design implementation and convergence issues related to code vector generation whereby, use of Lanczos algorithm is considered for simpler design and faster convergence. The algorithm can be either used to simplify design implementation by providing simplified solution to Weiner Hopf equation (without requiring inverse of correlation matrix) over Krylov subspace or can be used to expedite convergence by updating the signature sequence with eigenvector corresponding to the least eigenvalue of the signature correlation matrix through reduced rank eigen subspace search

    Green Femtocell Based on UWB Technologies

    Get PDF
    corecore