12 research outputs found

    Mechanism and Behaviour Co-optimisation of High Performance Mobile Robots

    Get PDF
    Mobile robots do not display the level of physical performance one would expect, given the specifications of their hardware. This research is based on the idea that their poor performance is at least partly due to their design, and proposes an optimisation approach for the design of high-performance mobile robots. The aim is to facilitate the design process, and produce versatile and robust robots that can exploit the maximum potential of today's technology. This can be achieved by a systematic optimisation study that is based on careful modelling of the robot's dynamics and its limitations, and takes into consideration the performance requirements that the robot is designed to meet. The approach is divided into two parts: (1) an optimisation framework, and (2) an optimisation methodology. In the framework, designs that can perform a large set of tasks are sought, by simultaneously optimising the design and the behaviours to perform them. The optimisation methodology consists of several stages, where various techniques are used for determining the design's most important parameters, and for maximising the chances of finding the best possible design based on the designer's evaluation criteria. The effectiveness of the optimisation approach is proved via a specific case-study of a high-performance balancing and hopping monopedal robot. The outcome is a robot design and a set of optimal behaviours that can meet several performance requirements of conflicting nature, by pushing the hardware to its limits in a safe way. The findings of this research demonstrate the importance of using realistic models, and taking into consideration the tasks that the robot is meant to perform in the design process

    Design of high-performance legged robots: A case study on a hopping and balancing robot

    Get PDF
    The availability and capabilities of present-day technology suggest that legged robots should be able to physically outperform their biological counterparts. This thesis revolves around the philosophy that the observed opposite is caused by over-complexity in legged robot design, which is believed to substantially suppress design for high-performance. In this dissertation a design philosophy is elaborated with a focus on simple but high performance design. This philosophy is governed by various key points, including holistic design, technology-inspired design, machine and behaviour co-design and design at the performance envelope. This design philosophy also focuses on improving progress in robot design, which is inevitably complicated by the aspire for high performance. It includes an approach of iterative design by trial-and-error, which is believed to accelerate robot design through experience. This thesis mainly focuses on the case study of Skippy, a fully autonomous monopedal balancing and hopping robot. Skippy is maximally simple in having only two actuators, which is the minimum number of actuators required to control a robot in 3D. Despite its simplicity, it is challenged with a versatile set of high-performance activities, ranging from balancing to reaching record jump heights, to surviving crashes from several meters and getting up unaided after a crash, while being built from off-the-shelf technology. This thesis has contributed to the detailed mechanical design of Skippy and its optimisations that abide the design philosophy, and has resulted in a robust and realistic design that is able to reach a record jump height of 3.8m. Skippy is also an example of iterative design through trial-and-error, which has lead to the successful design and creation of the balancing-only precursor Tippy. High-performance balancing has been successfully demonstrated on Tippy, using a recently developed balancing algorithm that combines the objective of tracking a desired position command with balancing, as required for preparing hopping motions. This thesis has furthermore contributed to several ideas and theories on Skippy's road of completion, which are also useful for designing other high-performance robots. These contributions include (1) the introduction of an actuator design criterion to maximize the physical balance recovery of a simple balancing machine, (2) a generalization of the centre of percussion for placement of components that are sensitive to shock and (3) algebraic modelling of a non-linear high-gravimetric energy density compression spring with a regressive stress-strain profile. The activities performed and the results achieved have been proven to be valuable, however they have also delayed the actual creation of Skippy itself. A possible explanation for this happening is that Skippy's requirements and objectives were too ambitious, for which many complications were encountered in the decision-making progress of the iterative design strategy, involving trade-offs between exercising trial-and-error, elaborate simulation studies and the development of above-mentioned new theories. Nevertheless, from (1) the resulting realistic design of Skippy, (2) the successful creation and demonstrations of Tippy and (3) the contributed theories for high-performance robot design, it can be concluded that the adopted design philosophy has been generally successful. Through the case study design project of the hopping and balancing robot Skippy, it is shown that proper design for high physical performance (1) can indeed lead to a robot design that is capable of physically outperforming humans and animals and (2) is already very challenging for a robot that is intended to be very simple

    An Empirical Approach for the Agile Control of Dynamic Legged Robot

    Get PDF

    Magnetorheological Variable Stiffness Robot Legs for Improved Locomotion Performance

    Get PDF
    In an increasingly automated world, interest in the field of robotics is surging, with an exciting branch of this area being legged robotics. These biologically inspired robots have leg-like limbs which enable locomotion, suited to challenging terrains which wheels struggle to conquer. While it has been quite some time since the idea of a legged machine was first made a reality, this technology has been modernised with compliant legs to improve locomotion performance. Recently, developments in biological science have uncovered that humans and animals alike control their leg stiffness, adapting to different locomotion conditions. Furthermore, as these studies highlighted potential to improve upon the existing compliant-legged robots, modern robot designs have seen implementation of variable stiffness into their legs. As this is quite a new concept, few works have been published which document such designs, and hence much potential exists for research in this area. As a promising technology which can achieve variable stiffness, magnetorheological (MR) smart materials may be ideal for use in robot legs. In particular, recent advances have enabled the use of MR fluid (MRF) to facilitate variable stiffness in a robust manner, in contrast to MR elastomer (MRE). Developed in this thesis is what was at the time the first rotary MR damper variable stiffness mechanism. This is proposed by the author for use within a robot leg to enable rapid stiffness control during locomotion. Based its mechanics and actuation, the leg is termed the magnetorheological variable stiffness actuator leg mark-I (MRVSAL-I). The leg, with a C-shaped morphology suited to torque actuation is first characterised through linear compression testing, demonstrating a wide range of stiffness variation. This variation is in response to an increase in electric current supplied to the internal electromagnetic coils of the MR damper. A limited degrees-of-freedom (DOF) bipedal locomotion platform is designed and manufactured to study the locomotion performance resulting from the variable stiffness leg. It is established that optimal stiffness tuning of the leg could achieve reduced mechanical cost of transport (MCOT), thereby improving locomotion performance. Despite the advancements to locomotion demonstrated, some design issues with the leg required further optimisation and a new leg morphology

    BIOMECHANICS OF TERRESTRIAL LOCOMOTION: ASYMMETRIC OCTOPEDAL AND QUADRUPEDAL GAITS

    Get PDF
    The main goal of this dissertation is to investigate the biomechanics of octopedal and quadrupedal locomotion in terrestrial animals, common determinants, advantages and limits, in particular of the asymmetric gaits. Two different approach have been chosen: i) a kinematic study of a terrestrial spider, the Brazilian giant tawny-red tarantula, an octopods predator species that hide in burrows, ambush and rapidly bounce the prey with a sprint, and ii) a comparative study of the two types of gallop of the cursorial terrestrial mammals. Eight-legs locomotion has been one of the first travelling modes on land, and spiders display one of the most versatile locomotor repertoire: they move at slow and fast speed, forward-backward-sideways, they climb and even jump, both on firm terrain and from the water surface. Spiders can walk in the two senses at the same speed, just by reversing their diagonal footfall scheme. They turn on the spot like an armoured tank, with opposite direction of the two treads of limbs. Also, the high number of limbs ensures an increased locomotor versatility on uneven and rough terrains, particularly in the likely unawareness of each endpoint location on the ground. The aims of this first part were: i) identifying the principal octopod gaits, ii) calculating the mechanical external and internal work at the different speeds/gaits, iii) assessing any tendency to exchange potential and kinetic energy of the body centre of mass, as in pendulum-like gaits, and iv) evaluating how spiders\u2019 mechanical performance and variables allometrically compare to other species. Another question was: can the octopod gaits be considered as different combinations of two quadrupeds\u2019 locomotion? In this investigation we used inverse dynamics to study the locomotor performance of a terrestrial spider. 9 reflective markers have been placed on the tip of the 8 legs and on the cephalothorax, and their position recorded at a frequency of 50 Hz and digitized through a motion analysis system. Data have been processed using LabView (National Instruments, USA) specific development. The 3D trajectories of the body centre of mass in local coordinates, as during locomotion on a treadmill, have been calculated by applying a mathematical method based on the Fourier analysis of the three coordinates of the centre of mass (COM) over time. Two main gaits, a slow and a fast one characterised by distinctive 3D trajectories of COM, have been identified. The calculated total mechanical work (= external+internal) and metabolic data from the literature allowed estimating the locomotion efficiency of this species, which resulted less than 4%. Octopod gait pattern due to alternating limb support, which generates asymmetrical COM trajectories and a small but consistent energy transfer between potential and kinetic energies of COM, can be considered as formed by two subsequent quadrupeds, where the first two pairs of feet (1 and 2) are the fore and the hind feet of the first quadruped, and the third and fourth pairs are the fore and hind feet of the second quadruped. The two quadrupeds are almost in phase, being the first and third pairs synchronised in their movements as well as the second and fourth. Octopedal locomotion exhibits two main gaits, neither of which incorporating a flight phase, characterised by a consistent limb pattern and a small but remarkable energy recovery index. Gallop has been chosen as model of asymmetric cursorial locomotion in quadrupeds. In transverse gallop the placement of the second hind foot is followed by that of the contralateral forefoot, while in rotary gallop is followed by the ipsilateral forefoot, and the sequence of footfalls appears to rotate around the body. The question are: why two models of gallop? Are they specie-specific? Which are the biomechanical determinants of the choice between transverse and rotary gallop? Aims of this part of the research were: i) assess, when possible, the specie-specificity of the gallop type in different cursorial mammal species, ii) phylogenetically classify the investigated species, iii) Made a comparative analysis based on morphological, physiological and environmental differences. 351 filmed sequences have been analysed to assess the gallop type of 89 investigated mammal species belonging to Carnivora, Artiodactyla and Perissodactyla orders. 23 biometrical, ecological and physiological parameters have been collected for each species both from literature data and from experimental measures. Most of the species showed only one kind of gallop: transverse (42%) or rotary (39%), while some species performed rotary gallop only at high speed (19%). In a multivariate factorial analysis the first principal component (PC), which accounted for 40% of the total variance, was positively correlated to the relative speed and negatively correlated to size and body mass. The second PC was correlated to the ratio between autopodial and zygopodial limb segments. Large size and longer proximal limb segments resulted associated to transverse gallop, while rotary and speed dependent species showed higher metacarpus/humerus and metatarsus/femur length ratio and faster relative speeds. The maximum angular excursion resulted proportional to the maximum Froude number, and significantly higher in rotary galloper. The gait pattern analysis provided significant differences between transverse and rotary gallop in fore and hind duty factor, and in duration of the fore contact. Our results assessed that a typical gallop gait is adopted by a large number of mammal species, and indicated that the gallop pattern depends on diverse environmental, morphometrical and biomechanical characters. Even if mammals and spiders can be considered far and different worlds, we can recognize common pattern of locomotion. The quadruped gaits have been modelled as the combination of two biped gaits with some difference in the phase-cycle, in the same way, we described the octopods gaits as the combination of two quadruped gaits in series. In conclusion, this work shed light on some aspects of octopedal and quadrupedal asymmetric gaits, opening to the raising of new questions and new perspective of research

    Dynamic Bipedal Locomotion: From Hybrid Zero Dynamics to Control Lyapunov Functions via Experimentally Realizable Methods

    Get PDF
    Robotic bipedal locomotion has become a rapidly growing field of research as humans increasingly look to augment their natural environments with intelligent machines. In order for these robotic systems to navigate the often unstructured environments of the world and perform tasks, they must first have the capability to dynamically, reliably, and efficiently locomote. Due to the inherently hybrid and underactuated nature of dynamic bipedal walking, the greatest experimental successes in the field have often been achieved by considering all aspects of the problem; with explicit consideration of the interplay between modeling, trajectory planning, and feedback control. The methodology and developments presented in this thesis begin with the modeling and design of dynamic walking gaits on bipedal robots through hybrid zero dynamics (HZD), a mathematical framework that utilizes hybrid system models coupled with nonlinear controllers that results in stable locomotion. This will form the first half of the thesis, and will be used to develop a solid foundation of HZD trajectory optimization tools and algorithms for efficient synthesis of accurate hybrid motion plans for locomotion on two underactuated and compliant 3D bipeds. While HZD and the associated trajectory optimization are an existing framework, the resulting behaviors shown in these preliminary experiments will extend the limits of what HZD has demonstrated is possible thus far in the literature. Specifically, the core results of this thesis demonstrate the first experimental multi-contact humanoid walking with HZD on the DURUS robot and then through the first compliant HZD motion library for walking over a continuum of walking speeds on the Cassie robot. On the theoretical front, a novel formulation of an optimization-based control framework is introduced that couples convergence constraints from control Lyapunov functions (CLF)s with desirable formulations existing in other areas of the bipedal locomotion field that have proven successful in practice, such as inverse dynamics control and quadratic programming approaches. The theoretical analysis and experimental validation of this controller thus forms the second half of this thesis. First, a theoretical analysis is developed which demonstrates several useful properties of the approach for tuning and implementation, and the stability of the controller for HZD locomotion is proven. This is then extended to a relaxed version of the CLF controller, which removes a convergence inequality constraint in lieu of a conservative CLF cost within a quadratic program to achieve tracking. It is then explored how this new CLF formulation can fully leverage the planned HZD walking gaits to achieve the target performance on physical hardware. Towards this goal, an experimental implementation of the CLF controller is derived for the Cassie robot, with the resulting experiments demonstrating the first successful realization of a CLF controller for a 3D biped on hardware in the literature. The accuracy of the robot model and synthesized HZD motion library allow the real-time control implementation to regularize the CLF optimization cost about the nominal walking gait. This drives the controller to choose smooth input torques and anticipated spring torques, as well as regulate an optimal distribution of feasible ground reaction forces on hardware while reliably tracking the planned virtual constraints. These final results demonstrate how each component of this thesis were brought together to form an effective end-to-end implementation of a nonlinear control framework for underactuated locomotion on a bipedal robot through modeling, trajectory optimization, and then ultimately real-time control.</p

    Hardware, software and control design considerations towards low-cost compliant quadruped robots

    Get PDF
    Quadrupedal robots have been a field of interest the last few years, with many new maturing platforms. Many of these projects have in common the use of state of the art actuation and sensing, and therefore are able to handle difficult locomotion tasks very effectively. This work focuses on another trend of low-cost, quadrupedal robots, that features less precise actuators and sensors, but overcomes their limitations with strong bio-inspired designs to achieve state of the art locomotion. We aim here to further extend the achievements of this approach to handle more complex tasks and that require anticipation, We would like also to verify to which extent a close synergy between clever mechanics, sensorimotor coordination, and Central Pattern Generator models is able to handle these tasks. This thesis presents supporting work that was required to pursue this goal. A software architecture for the development of real-time drivers and low-level control for robotic applications, based on a clear separation of concerns is presented. An implementation of this architecture able to handle the specific requirements for small compliant quadruped robots is proposed. Furthermore, the development and integration of a communication protocol for inter-electronic devices communication on the Oncilla robot is discussed. As leg load is a key quantity in some of the sensory-motor coordination this thesis want to explore, a novel tactile sensing approach for its estimation is proposed, based on an Extended Kalman Filter data fusion of static and dynamic tactile sensor information. Then, to support the design of efficient interactions between the control and the bio-inspired mechanics, accurate dynamic modeling of the Advanced Spring Loaded Pantographic leg, equipping all robots considered here, is presented. We propose two approaches to this modeling with the presentation of their benefits and limitations. Finally, two Central Pattern Generator architectures are proposed, based on biologically inspired foot trajectories. The first is using a well-known method for inter-limb coordination with strong neural coupling, and the second, the Tegotae rule, relies only on limb physical coupling and strong sensory-motor coordination. These two approaches are compared on their capacity to handle dynamic footstep placement and it let to the conclusion that strong sensory-motor coordination is required for this task

    Advances in Bio-Inspired Robots

    Get PDF
    This book covers three major topics, specifically Biomimetic Robot Design, Mechanical System Design from Bio-Inspiration, and Bio-Inspired Analysis on A Mechanical System. The Biomimetic Robot Design part introduces research on flexible jumping robots, snake robots, and small flying robots, while the Mechanical System Design from Bio-Inspiration part introduces Bioinspired Divide-and-Conquer Design Methodology, Modular Cable-Driven Human-Like Robotic Arm andWall-Climbing Robot. Finally, in the Bio-Inspired Analysis on A Mechanical System part, research contents on the control strategy of Surgical Assistant Robot, modeling of Underwater Thruster, and optimization of Humanoid Robot are introduced
    corecore