786 research outputs found

    SysMART Indoor Services: A System of Smart and Connected Supermarkets

    Full text link
    Smart gadgets are being embedded almost in every aspect of our lives. From smart cities to smart watches, modern industries are increasingly supporting the Internet of Things (IoT). SysMART aims at making supermarkets smart, productive, and with a touch of modern lifestyle. While similar implementations to improve the shopping experience exists, they tend mainly to replace the shopping activity at the store with online shopping. Although online shopping reduces time and effort, it deprives customers from enjoying the experience. SysMART relies on cutting-edge devices and technology to simplify and reduce the time required during grocery shopping inside the supermarket. In addition, the system monitors and maintains perishable products in good condition suitable for human consumption. SysMART is built using state-of-the-art technologies that support rapid prototyping and precision data acquisition. The selected development environment is LabVIEW with its world-class interfacing libraries. The paper comprises a detailed system description, development strategy, interface design, software engineering, and a thorough analysis and evaluation.Comment: 7 pages, 11 figur

    DEVELOPMENT OF WIRELESS SENSOR NETWORK FOR PUBLIC TRANSPORTATION

    Get PDF
    RFID (Radio Frequency Identification) and WSN (Wireless sensor network) have a wide variety of applications and huge potentials. RFID is used to provide detection and identification while WSN can monitor environment condition in a big area. Thus, integrating these two technologies will increase their capabilities and functionality. This project investigates the integration of RFID and WSN methodology to create a smart and reliable bus tracking system. The author plans to create a system where the traffic of busses in a bus station can be displayed continuously. People can check whether the bus is on schedule or delayed. The estimated time of arrival of the next bus will also be estimated based on the bus schedule. This information will be transmitted to the wireless display around the bus station. Therefore, the main focus of this project is to develop a device that is able to monitor the device by integrating wireless sensor network with RFID. From this project, we could know the location and identity of a targeted vehicle

    A comprehensive review of RFID and bluetooth security: practical analysis

    Get PDF
    The Internet of Things (IoT) provides the ability to digitize physical objects into virtual data, thanks to the integration of hardware (e.g., sensors, actuators) and network communications for collecting and exchanging data. In this digitization process, however, security challenges need to be taken into account in order to prevent information availability, integrity, and confidentiality from being compromised. In this paper, security challenges of two broadly used technologies, RFID (Radio Frequency Identification) and Bluetooth, are analyzed. First, a review of the main vulnerabilities, security risk, and threats affecting both technologies are carried out. Then, open hardware and open source tools like: Proxmark3 and Ubertooth as well as BtleJuice and Bleah are used as part of the practical analysis. Lastly, risk mitigation and counter measures are proposed

    Integrated ZigBee RFID sensor networks for resource tracking and monitoring in logistics management

    Get PDF
    The Radio Frequency Identification (RFID), which includes passive and active systems and is the hottest Auto-ID technology nowadays, and the wireless sensor network (WSN), which is one of the focusing topics on monitoring and control, are two fast-growing technologies that have shown great potential in future logistics management applications. However, an information system for logistics applications is always expected to answer four questions: Who, What, When and Where (4Ws), and neither of the two technologies is able to provide complete information for all of them. WSN aims to provide environment monitoring and control regarded as When and What , while RFID focuses on automatic identification of various objects and provides Who (ID). Most people usually think RFID can provide Where at all the time. But what normal passive RFID does is to tell us where an object was the last time it went through a reader, and normal active RFID only tells whether an object is presenting on site. This could sometimes be insufficient for certain applications that require more accurate location awareness, for which a system with real-time localization (RTLS), which is an extended concept of RFID, will be necessary to answer Where constantly. As WSN and various RFID technologies provide information for different but complementary parts of the 4Ws, a hybrid system that gives a complete answer by combining all of them could be promising in future logistics management applications. Unfortunately, in the last decade those technologies have been emerging and developing independently, with little research been done in how they could be integrated. This thesis aims to develop a framework for the network level architecture design of such hybrid system for on-site resource management applications in logistics centres. The various architectures proposed in this thesis are designed to address different levels of requirements in the hierarchy of needs, from single integration to hybrid system with real-time localization. The contribution of this thesis consists of six parts. Firstly, two new concepts, Reader as a sensor and Tag as a sensor , which lead to RAS and TAS architectures respectively, for single integrations of RFID and WSN in various scenarios with existing systems; Secondly, a integrated ZigBee RFID Sensor Network Architecture for hybrid integration; Thirdly, a connectionless inventory tracking architecture (CITA) and its battery consumption model adding location awareness for inventory tracking in Hybrid ZigBee RFID Sensor Networks; Fourthly, a connectionless stochastic reference beacon architecture (COSBA) adding location awareness for high mobility target tracking in Hybrid ZigBee RFID Sensor Networks; Fifthly, improving connectionless stochastic beacon transmission performance with two proposed beacon transmission models, the Fully Stochastic Reference Beacon (FSRB) model and the Time Slot Based Stochastic Reference Beacon (TSSRB) model; Sixthly, case study of the proposed frameworks in Humanitarian Logistics Centres (HLCs). The research in this thesis is based on ZigBee/IEEE802.15.4, which is currently the most widely used WSN technology. The proposed architectures are demonstrated through hardware implementation and lab tests, as well as mathematic derivation and Matlab simulations for their corresponding performance models. All the tests and simulations of my designs have verified feasibility and features of our designs compared with the traditional systems

    Wireless Sensing Based on RFID and Capacitive Technologies for Safety in Marble Industry Process Control

    Get PDF

    Prevention And Detection Mechanism For Security In Passive Rfid System

    Get PDF
    Low-cost radio frequency identification (RFID) tags conforming to the EPCglobal Class-1 Generation-2 standard are inherently insecure due to computational constraints. This thesis proposed the use of both prevention and detection mechanisms to solve the security and privacy issues. A lightweight cryptographic mutual authentication protocol which is resistant to tracking, denial of service (DoS) and replay attacks is proposed as a prevention mechanism. The proposed protocol is designed with lightweight cryptographic algorithm, including XOR, Hamming distance, rotation and a modified linear congruential generator (MLCG). The proposed protocol using 64 bits index is proved having the lowest non-unequivocally identification probability. In addition, the randomness of the session key generated from the MLCG is verified using NIST test suite. Besides that, the security of the proposed protocol is validated using the formal analysis tool, AVISPA. The correctness of the proposed protocol is demonstrated in a simulation model developed in JAVA TCP/IP socket. Next, the proposed protocol is implemented in RFID system including IAIK UHF Demo tag, TagSense Nano-UHF reader and back-end database. A GUI is created in a form of JAVA application to display data detected from tag. The proposed protocol implemented in real RFID system outperforms other related protocols because of 13.46 % shorter read time and write time consumed. The system is proved to be able to prevent tracking, DoS, and replay attacks from adversaries with moderate computation requirement compared to other related protocols

    Investigative Studies Of Embedded Assembly Line Automation System With Dual Rfid Platform

    Get PDF
    The lack of control and outdated inventory system have increased the management complexity of factory production lines, especially by the increase of sales and demand in the industry. An unmanageable system in the assembly line leads to inefficiency problems in tracking the volume of the product. The objective of this research is to develop a new design of embedded dual RFID architecture (passive and active systems) into a single system to track and monitor the product delivery process at the assembly lines in the industries. A new combination of 2.4 GHz ZigBee-based RFID operating in wireless sensor network platform is proposed as the solution to the product management problem. Meanwhile, the proposed system involved hardware and software designs which were embedded with the passive RFID reader at Ultra High Frequency (UHF). Results from the experiments conducted showed that the embedded system namely Passive and Active RFID (PAR) produced better overall performance compared to the standalone which Passive RFID (PR) system. The indoor range test was measured from 0 up to 60 m distance. The measurements obtained at 1 m and 60 m of transmission range are -33 dB and -51 dB respectively. It was also observed that embedded system has better signal strength value 7.84 % compared to the standalone system at 60 m. For the highest power level, which is level 4 (10 dBm) it is found that only 0.02 dB of signal loss occurred and matches 99.8 % to the theoretical value for PAR system. The throughput values for the embedded are between 12 kbps to 29 kbps for 17 bytes of data per packet. In the latency test, the embedded PAR system has better and therefore lower delay of 10.9 %, 40.6 % and 74.7 % for up to 3 tags compared to the standalone system. Experimental studies using Design of Experiment (DOE) were also developed using factorial and statistical data analysis to validate the eligibility of the proposed system to be applied in industrial environment and requirements. The factorial analysis on the effects on the conveyor speed, product orientation, tag orientation, type of tags, linear distance and type of product materials had been studied in DOE experiments for guidelines to the industry. The percentage of successful product detection indicates a very high prediction at 97.8 %. The proposed path loss model also provides the estimation of wireless distance and number of assembly lines required for establishing an efficient product management system. From the path loss model at distance 10 m the RSSI value for the NLOS indoor environment of assembly line gave -72 dBm
    corecore