2,339 research outputs found

    A 1.2-V 10- µW NPN-Based Temperature Sensor in 65-nm CMOS With an Inaccuracy of 0.2 °C (3σ) From 70 °C to 125 °C

    Get PDF
    An NPN-based temperature sensor with digital output transistors has been realized in a 65-nm CMOS process. It achieves a batch-calibrated inaccuracy of ±0.5 ◦C (3¾) and a trimmed inaccuracy of ±0.2 ◦C (3¾) over the temperature range from −70 ◦C to 125 ◦C. This performance is obtained by the use of NPN transistors as sensing elements, the use of dynamic techniques, i.e. correlated double sampling and dynamic element matching, and a single room-temperature trim. The sensor draws 8.3 μA from a 1.2-V supply and occupies an area of 0.1 mm2

    Integrated Circuits for Programming Flash Memories in Portable Applications

    Get PDF
    Smart devices such as smart grids, smart home devices, etc. are infrastructure systems that connect the world around us more than before. These devices can communicate with each other and help us manage our environment. This concept is called the Internet of Things (IoT). Not many smart nodes exist that are both low-power and programmable. Floating-gate (FG) transistors could be used to create adaptive sensor nodes by providing programmable bias currents. FG transistors are mostly used in digital applications like Flash memories. However, FG transistors can be used in analog applications, too. Unfortunately, due to the expensive infrastructure required for programming these transistors, they have not been economical to be used in portable applications. In this work, we present low-power approaches to programming FG transistors which make them a good candidate to be employed in future wireless sensor nodes and portable systems. First, we focus on the design of low-power circuits which can be used in programming the FG transistors such as high-voltage charge pumps, low-drop-out regulators, and voltage reference cells. Then, to achieve the goal of reducing the power consumption in programmable sensor nodes and reducing the programming infrastructure, we present a method to program FG transistors using negative voltages. We also present charge-pump structures to generate the necessary negative voltages for programming in this new configuration

    Ultra-low power mixed-signal frontend for wearable EEGs

    Get PDF
    Electronics circuits are ubiquitous in daily life, aided by advancements in the chip design industry, leading to miniaturised solutions for typical day to day problems. One of the critical healthcare areas helped by this advancement in technology is electroencephalography (EEG). EEG is a non-invasive method of tracking a person's brain waves, and a crucial tool in several healthcare contexts, including epilepsy and sleep disorders. Current ambulatory EEG systems still suffer from limitations that affect their usability. Furthermore, many patients admitted to emergency departments (ED) for a neurological disorder like altered mental status or seizures, would remain undiagnosed hours to days after admission, which leads to an elevated rate of death compared to other conditions. Conducting a thorough EEG monitoring in early-stage could prevent further damage to the brain and avoid high mortality. But lack of portability and ease of access results in a long wait time for the prescribed patients. All real signals are analogue in nature, including brainwaves sensed by EEG systems. For converting the EEG signal into digital for further processing, a truly wearable EEG has to have an analogue mixed-signal front-end (AFE). This research aims to define the specifications for building a custom AFE for the EEG recording and use that to review the suitability of the architectures available in the literature. Another critical task is to provide new architectures that can meet the developed specifications for EEG monitoring and can be used in epilepsy diagnosis, sleep monitoring, drowsiness detection and depression study. The thesis starts with a preview on EEG technology and available methods of brainwaves recording. It further expands to design requirements for the AFE, with a discussion about critical issues that need resolving. Three new continuous-time capacitive feedback chopped amplifier designs are proposed. A novel calibration loop for setting the accurate value for a pseudo-resistor, which is a crucial block in the proposed topology, is also discussed. This pseudoresistor calibration loop achieved the resistor variation of under 8.25%. The thesis also presents a new design of a curvature corrected bandgap, as well as a novel DDA based fourth-order Sallen-Key filter. A modified sensor frontend architecture is then proposed, along with a detailed analysis of its implementation. Measurement results of the AFE are finally presented. The AFE consumed a total power of 3.2A (including ADC, amplifier, filter, and current generation circuitry) with the overall integrated input-referred noise of 0.87V-rms in the frequency band of 0.5-50Hz. Measurement results confirmed that only the proposed AFE achieved all defined specifications for the wearable EEG system with the smallest power consumption than state-of-art architectures that meet few but not all specifications. The AFE also achieved a CMRR of 131.62dB, which is higher than any studied architectures.Open Acces

    Design of Analog CMOS Circuits for Batteryless Implantable Telemetry Systems

    Get PDF
    A wireless biomedical telemetry system is a device that collects biomedical signal measurements and transmits data through wireless RF communication. Testing medical treatments often involves experimentation on small laboratory animals, such as genetically modified mice and rats. Using batteries as a power source results in many practical issues, such as increased size of the implant and limited operating lifetime. Wireless power harvesting for implantable biomedical devices removes the need for batteries integrated into the implant. This will reduce device size and remove the need for surgical replacement due to battery depletion. Resonant inductive coupling achieves wireless power transfer in a manner modelled by a step down transformer. With this methodology, power harvesting for an implantable device is realized with the use of a large primary coil external to the subject, and a smaller secondary coil integrated into the implant. The signal received from the secondary coil must be regulated to provide a stable direct current (DC) power supply, which will be used to power the electronics in the implantable device. The focus of this work is on development of an electronic front-end for wireless powering of an implantable biomedical device. The energy harvesting front-end circuit is comprised of a rectifier, LDO regulator, and a temperature insensitive voltage reference. Physical design of the front-end circuit is developed in 0.13um CMOS technology with careful attention to analog layout issues. Post-layout simulation results are presented for each sub-block as well as the full front-end structure. The LDO regulator operates with supply voltages in the range of 1V to 1.5V with quiescent current of 10.5uA The complete power receiver front-end has a power conversion efficiency of up to 29%

    Analyses and design strategies for fundamental enabling building blocks: Dynamic comparators, voltage references and on-die temperature sensors

    Get PDF
    Dynamic comparators and voltage references are among the most widely used fundamental building blocks for various types of circuits and systems, such as data converters, PLLs, switching regulators, memories, and CPUs. As thermal constraints quickly emerged as a dominant performance limiter, on-die temperature sensors will be critical to the reliable operation of future integrated circuits. This dissertation investigates characteristics of these three enabling circuits and design strategies for improving their performances. One of the most critical specifications of a dynamic comparator is its input referred offset voltage, which is pivotal to achieving overall system performance requirements of many mixed-signal circuits and systems. Unlike offset voltages in other circuits such as amplifiers, the offset voltage in a dynamic comparator is extremely challenging to analyze and predict analytically due to its dependence on transient response and due to internal positive feedback and time-varying operating points in the comparator. In this work, a novel balanced method is proposed to facilitate the evaluation of time-varying operating points of transistors in a dynamic comparator. Two types of offsets are studied in the model: (1) static offset voltage caused by mismatches in mobilities, transistor sizes, and threshold voltages, and (2) dynamic offset voltage caused by mismatches in parasitic capacitors or loading capacitors. To validate the proposed method, dynamic comparators in two prevalent topologies are implemented in 0.25 μm and 40 nm CMOS technologies. Agreement between predicted results and simulated results verifies the effectiveness of the proposed method. The new method and the analytical models enable designers to identify the most dominant contributors to offset and to optimize the dynamic comparators\u27 performances. As an illustrating example, the Lewis-Gray dynamic comparator was analyzed using the balanced method and redesigned to minimize its offset voltage. Simulation results show that the offset voltage was easily reduced by 41% while maintaining the same silicon area. A bandgap voltage reference is one of the core functional blocks in both analog and digital systems. Despite the reported improvements in performance of voltage references, little attention has been focused on theoretical characterizations of non-ideal effects on the value of the output voltage, on the inflection point location and on the curvature of the reference voltage. In this work, a systematic approach is proposed to analytically determine the effects of two non-ideal elements: the temperature dependent gain-determining resistors and the amplifier offset voltage. The effectiveness of the analytical models is validated by comparing analytical results against Spectre simulation results. Research on on-die temperature sensor design has received rapidly increasing attention since component and power density induced thermal stress has become a critical factor in the reliable operation of integrated circuits. For effective power and thermal management of future multi-core systems, hundreds of sensors with sufficient accuracy, small area and low power are required on a single chip. This work introduces a new family of highly linear on chip temperature sensors. The proposed family of temperature sensors expresses CMOS threshold voltage as an output. The sensor output is independent of power supply voltage and independent of mobility values. It can achieve very high temperature linearity, with maximum nonlinearity around +/- 0.05oC over a temperature range of -20oC to 100oC. A sizing strategy based on combined analytical analysis and numerical optimization has been presented. Following this method, three circuits A, B and C have been designed in standard 0.18 ym CMOS technology, all achieving excellent linearity as demonstrated by Cadence Spectre simulations. Circuits B and C are the modified versions of circuit A, and have improved performance at the worst corner-low voltage supply and high threshold voltage corner. Finally, a direct temperature-to-digital converter architecture is proposed as a master-slave hybrid temperature-to-digital converter. It does not require any traditional constant reference voltage or reference current, it does not attempt to make any node voltage or branch current constant or precisely linear to temperature, yet it generates a digital output code that is very linear with temperature

    High performance readout circuits and devices for Lorentz force resonant CMOS-MEMS magnetic sensors

    Get PDF
    In the last decades, sensing capabilities of martphones have greatly improved since the early mobile phones of the 90’s. Moreover, wearables and the automotive industry require increasing electronics and sensing sophistication. In such echnological advance, Micro Electro Mechanical Systems (MEMS) have played an important role as accelerometers and gyroscopes were the first sensors based on MEMS technology massively introduced in the market. In contrast, it still does not exist a commercial MEMS-based compass, even though Lorentz force MEMS magnetometers were first proposed in the late 90’s. Currently, Lorentz force MEMS magnetometers have been under the spotlight as they can offer an integrated solution to nowadays sensing power. As a consequence, great advances have been achieved, but various bottlenecks limit the introduction of Lorentz force MEMS compasses in the market. First, current MEMS magnetometers require high current consumption and high biasing voltages to achieve good sensitivities. Moreover, even though devices with excellent performance and sophistication are found in the literature, there is still a lack of research on the readout electronic circuits, specially in the digital signal processing, and closed loop control. Second, most research outcomes rely on custom MEMS fabrication rocesses to manufacture the devices. This is the same approach followed in current commercial MEMS, but it requires different fabrication processes for the electronics and the MEMS. As a consequence, manufacturing cost is high and sensor performance is affected by the MEMS-electronics interface parasitics. This dissertation presents potential solutions to these issues in order to pave the road to the commercialization of Lorentz force MEMS compasses. First, a complete closed loop, digitally controlled readout system is proposed. The readout circuitry, implemented with off-the-shelf commercial components, and the digital control, on an FPGA, are proposed as a proof of concept of the feasibility, and potential benefits, of such architecture. The proposed system has a measured noise of 550 nT / vHz while the MEMS is biased with 300 µA rms and V = 1 V . Second, various CMOS-MEMS magnetometers have been designed using the BEOL part of the TSMC and SMIC 180 nm standard CMOS processes, and wet and vapor etched. The devices measurement and characterisation is used to analyse the benefits and drawbacks of each design as well as releasing process. Doing so, a high volume manufacturing viability can be performed. Yield values as high as 86% have been obtained for one device manufactured in a SMIC 180 nm full wafer run, having a sensitivity of 2.82 fA/µT · mA and quality factor Q = 7.29 at ambient pressure. While a device manufactured in TSMC 180 nm has Q = 634.5 and a sensitivity of 20.26 fA/µT ·mA at 1 mbar and V = 1 V. Finally, an integrated circuit has been designed that contains all the critical blocks to perform the MEMS signal readout. The MEMS and the electronics have been manufactured using the same die area and standard TSMC 180 nm process in order to reduce parasitics and improve noise and current consumption. Simulations show that a resolution of 8.23 µT /mA for V = 1 V and BW = 10 Hz can be achieved with the designed device.En les últimes dècades, tenint en compte els primers telèfons mòbils dels anys 90, les capacitats de sensat dels telèfons intel·ligents han millorat notablement. A més, la indústria automobilística i de wearables necessiten cada cop més sofisticació en el sensat. Els Micro Electro Mechanical Systems (MEMS) han tingut un paper molt important en aquest avenç tecnològic, ja que acceleròmetres i giroscopis varen ser els primers sensors basats en la tecnologia MEMS en ser introduïts massivament al mercat. En canvi, encara no existeix en la indústria una brúixola electrònica basada en la tecnologia MEMS, tot i que els magnetòmetres MEMS varen ser proposats per primera vegada a finals dels anys 90. Actualment, els magnetòmetres MEMS basats en la força de Lorentz són el centre d'atenció donat que poden oferir una solució integrada a les capacitats de sensat actuals. Com a conseqüència, s'han aconseguit grans avenços encara que existeixen diversos colls d'ampolla que encara limiten la introducció al mercat de brúixoles electròniques MEMS basades en la força de Lorentz. Per una banda, els agnetòmetres MEMS actuals necessiten un consum de corrent i un voltatge de polarització elevats per aconseguir una bona sensibilitat. A més, tot i que a la literatura hi podem trobar dispositius amb rendiments i sofisticació excel·lents, encara existeix una manca de recerca en el circuit de condicionament, especialment de processat digital i control del llaç. Per altra banda, moltes publicacions depenen de processos de fabricació de MEMS fets a mida per fabricar els dispositius. Aquesta és la mateixa aproximació que s'utilitza actualment en la indústria dels MEMS, però té l'inconvenient que requereix processos de fabricació diferents pels MEMS i l’electrònica. Per tant, el cost de fabricació és alt i el rendiment del sensor queda afectat pels paràsits en la interfície entre els MEMS i l'electrònica. Aquesta tesi presenta solucions potencials a aquests problemes amb l'objectiu d'aplanar el camí a la comercialització de brúixoles electròniques MEMS basades en la força de Lorentz. En primer lloc, es proposa un circuit de condicionament complet en llaç tancat controlat digitalment. Aquest s'ha implementat amb components comercials, mentre que el control digital del llaç s'ha implementat en una FPGA, tot com una prova de concepte de la viabilitat i beneficis potencials que representa l'arquitectura proposada. El sistema presenta un soroll de 550 nT / vHz quan el MEMS està polaritzat amb 300 µArms i V = 1 V . En segon lloc, s'han dissenyat varis magnetòmetres CMOS-MEMS utilitzant la part BEOL dels processos CMOS estàndard de TSMC i SMIC 180 nm, que després s'han alliberat amb líquid i gas. La mesura i caracterització dels dispositius s’ha utilitzat per analitzar els beneficis i inconvenients de cada disseny i procés d’alliberament. D'aquesta manera, s'ha pogut realitzar un anàlisi de la viabilitat de la seva fabricació en massa. S'han obtingut valors de yield de fins al 86% per un dispositiu fabricat amb SMIC 180 nm en una oblia completa, amb una sensibilitat de 2.82 fA/µT · mA i un factor de qualitat Q = 7.29 a pressió ambient. Per altra banda, el dispositiu fabricat amb TSMC 180 nm presenta una Q = 634.5 i una sensibilitat de 20.26 fA/µT · mA a 1 mbar amb V = 1 V. Finalment, s'ha dissenyat un circuit integrat que conté tots els blocs per a realitzar el condicionament de senyal del MEMS. El MEMS i l'electrònica s'han fabricat en el mateix dau amb el procés estàndard de TSMC 180 nm per tal de reduir paràsits i millorar el soroll i el consum de corrent. Les simulacions mostren una resolució de 8.23 µT /mA amb V = 1 V i BW = 10 Hz pel dispositiu dissenyat
    corecore