15 research outputs found

    Time-dependent semi-discrete analysis of the viscoelastic fluid flow problem using a variational multiscale stabilised formulation

    Get PDF
    In this article we analyse a stabilised finite element formulation recently proposed to approximate viscoelastic fluid flows. The formulation has shown to have accuracy and robustness in the different benchmarks tested in the viscoelastic framework and permitting the use of equal interpolation of the unknown fields. We first present results about a linearised sub-problem, for which well-posedness and stability results can be proved. Then, the semi-discrete nonlinear time-dependent case is addressed using a fixed point theorem, which allows us to prove existence of a semi-discrete solution, along with error estimates

    Numerical methods and analysis for continuous data assimilation in fluid models

    Get PDF
    Modeling fluid flow arises in many applications of science and engineering, including the design of aircrafts, prediction of weather, and oceanography. It is vital that these models are both computationally efficient and accurate. In order to obtain good results from these models, one must have accurate and complete initial and boundary conditions. In many real-world applications, these conditions may be unknown, only partially known, or contain error. In order to overcome the issue of unknown or incomplete initial conditions, mathematicians and scientists have been studying different ways to incorporate data into fluid flow models to improve accuracy and/or speed up convergence to the true solution. In this thesis, we are studying one specific data assimilation technique to apply to finite element discretizations of fluid flow models, known as continuous data assimilation. Continuous data assimilation adds a penalty term to the differential equation to nudge coarse spatial scales of the algorithm solution to coarse spatial scales of the true solution (the data). We apply continuous data assimilation to different algorithms of fluid flow, and perform numerical analysis and tests of the algorithms

    Low-Rank Iterative Solvers for Large-Scale Stochastic Galerkin Linear Systems

    Get PDF
    Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, Dissertation, 2016von Dr. rer. pol. Akwum Agwu OnwuntaLiteraturverzeichnis: Seite 135-14

    Extended finite element methods for approximation of singularities

    Get PDF
    Tato doktorská práce je zaměřena na řešení problému proudění podzemní vody v porézním prostředí, které je ovlivněno přítomností vrtů či studní. Model proudění je sestaven na základě konceptu redukce dimenzí, který je hojně využíván při modelování rozpukaného porézního prostředí, především granitů. Vrty jsou modelovány jako 1d objekty, které protínají blok horniny. Propojení těchto domén v redukovaném modelu způsobuje singularity v řešení v okolí vrtů. Vrty i porézní médium jsou síťovány nezávisle na sobě což vede k výpočetním sítím kombinujícím elementy různých dimenzí.Jádrem doktorské práce je pak vývoj specializované metody konečných prvků pro výše popsaný model. Pro umožnění propojení sítí různých dimenzí a pro zpřesnění aproximace singularit v okolí vrtů je použita rozšířená metoda konečných prvků (XFEM), v rámci níž jsou navrženy nové typy obohacení konečně-prvkové aproximace. Metoda XFEM je nejprve aplikována v modelu pro tlak, dále je navrženo obohacení pro rychlost a metoda je použita ve smíšeném modelu, jehož řešením jsou rychlost i tlak.Doktorská práce se dále detailně věnuje numerickým aspektům v metodě XFEM, a to především adaptivním kvadraturám, volbě velikosti obohacené oblasti nebo podmíněnosti výsledného lineárního systému. Vlastnosti navržené XFEM metody a optimální konvergence jsou ověřeny na sérii numerických experimentů. Praktickým výstupem doktorské práce je implementace metody XFEM jako součásti open-source softwaru Flow123d.In this doctoral thesis, a model of groundwater flow in porous media intersected with wells (boreholes, channels) is developed. The model is motivated by the reduced dimension approach which is being often used in fractured porous media problems, especially in granite rocks. The wells are modeled as lower dimensional 1d objects and they intersect the surrounding bulk rock domains. The coupling between the wells and the rock then causes a singular behaviour of the solution in the higher dimensional domains in the vicinity of the cross-sections. The domains are discretized separately resulting in an incompatible mesh of combined dimensions.The core contribution of this work is in the developement of a specialized finite element method for such model. Different Extended finite element methods (XFEM) are studied and new enrichments are suggested to better approximate the singularities and to enable the coupling of the wells with the higher dimensional domains. At first the XFEM is applied in a pressure model, later an enrichment for velocity is suggested and the XFEM is used in a mixed model, solving both velocity and pressure.Different numerical aspects of the XFEM is studied in details, including an adaptive quadrature strategy, a proper choice of the enrichment zone or a conditioning of the resulting linear system. The properties of the suggested XFEM are validated on a set of numerical tests and the optimal convergence rate is demonstrated. The XFEM is implemented as a part of the open-source software Flow123d

    Hydrodynamic stability theory of double ablation front structures in inertial confinement fusion.

    Full text link
    The aim of inertial confinement fusion is the production of energy by the fusion of thermonuclear fuel (deuterium-tritium) enclosed in a spherical target due to its implosion. In the direct-drive approach, the energy needed to spark fusion reactions is delivered by the irradiation of laser beams that leads to the ablation of the outer shell of the target (the so-called ablator). As a reaction to this ablation process, the target is accelerated inwards, and, provided that this implosion is sufficiently strong a symmetric, the requirements of temperature and pressure in the center of the target are achieved leading to the ignition of the target (fusion). One of the obstacles capable to prevent appropriate target implosions takes place in the ablation region where any perturbation can grow even causing the ablator shell break, due to the ablative Rayleigh-Taylor instability. The ablative Rayleigh-Taylor instability has been extensively studied throughout the last 40 years in the case where the density/temperature profiles in the ablation region present a single front (the ablation front). Single ablation fronts appear when the ablator material has a low atomic number (deuterium/tritium ice, plastic). In this case, the main mechanism of energy transport from the laser energy absorption region (low density plasma) to the ablation region is the electron thermal conduction. However, recently, the use of materials with a moderate atomic number (silica, doped plastic) as ablators, with the aim of reducing the target pre-heating caused by suprathermal electrons generated by the laser-plasma interaction, has demonstrated an ablation region composed of two ablation fronts. This fact appears due to increasing importance of radiative effects in the energy transport. The linear theory describing the Rayleigh-Taylor instability for single ablation fronts cannot be applied for the stability analysis of double ablation front structures. Therefore, the aim of this thesis is to develop, for the first time, a linear stability theory for this type of hydrodynamic structures

    Impact of the unsteady aerothermal environment on the turbine blades temperature

    Get PDF
    Ce travail de thèse, menée dans le cadre d'une convention CIFRE entre TURBOMECA et le CERFACS, s'inscrit dans un contexte d'amélioration des performances des turbines de type axial équipant les turboréacteurs d'hélicoptère. L'une des principales difficultés rencontrée dans cette démarche concerne la maîtrise de la température que voient les pales de ce composant, notamment la roue haute pression. Les travaux de cette thèse s'articulent autour de deux axes principaux: - Le premier traite l'analyse de la Simulations aux Grandes Echelles (SGE) autour de pales. Une approche numérique SGE sur des maillages non-structurés est comparée aux résultats Reynolds Averaged Navier-Stokes (RANS) sur des maillages structurés, usuels dans ce type de configuration, ainsi qu'à une approche SGE sur maillages structurés. La SGE sur maillage non-structuré démontre sa capacité à prendre en compte les phénomènes qui ont un impact sur les flux de chaleur pariétaux. - Le second axe de recherche a pour objectif de développer un outil numérique de couplage pour assurer le transfert d'information entre un code SGE réactif sur maillage non-structuré, employé dans les chambres de combustion, et un code non-réactif en RANS, utilisé par les industriels pour modéliser l'étage turbine. Cet outil a été validé sur plusieurs cas tests qui montrent le potentiel de cette méthodologie pour le couplage multi-composant. ABSTRACT : This PhD dissertation, conducted as part of a CIFRE research project between TURBOMECA and CERFACS, deals with improving performance of axial turbines from helicopter engines. One of the main difficulties with such an objective is the control of the temperature prediction around the blades, especially the temperature of the high pressure rotor. The work of this thesis focusses on two axes: - First concerns the analysis of Large Eddy Simulation (LES) predictions around blades: a numerical LES approach on unstructured meshes is compared to Reynolds Averaged Navier-Stokes (RANS) results on structured meshes as well as to LES on structured meshes. LES on unstructured meshes demonstrates its capacity of taking into account the phenomena which have an impact on wall heat flux around blades. - The second axis deals with the development of a numerical tool for coupling and transferring information between a reactive LES code, used in combustion chambers, and a non-reactive RANS solver, employed by industrial actors for modeling the turbine stage. This tool is validated on a number of test cases which show the potential of this methodology for multi-component predictions
    corecore