1,911 research outputs found

    A Posteriori Error Control for the Binary Mumford-Shah Model

    Full text link
    The binary Mumford-Shah model is a widespread tool for image segmentation and can be considered as a basic model in shape optimization with a broad range of applications in computer vision, ranging from basic segmentation and labeling to object reconstruction. This paper presents robust a posteriori error estimates for a natural error quantity, namely the area of the non properly segmented region. To this end, a suitable strictly convex and non-constrained relaxation of the originally non-convex functional is investigated and Repin's functional approach for a posteriori error estimation is used to control the numerical error for the relaxed problem in the L2L^2-norm. In combination with a suitable cut out argument, a fully practical estimate for the area mismatch is derived. This estimate is incorporated in an adaptive meshing strategy. Two different adaptive primal-dual finite element schemes, and the most frequently used finite difference discretization are investigated and compared. Numerical experiments show qualitative and quantitative properties of the estimates and demonstrate their usefulness in practical applications.Comment: 18 pages, 7 figures, 1 tabl

    Dual weighted residual method for laser surface hardening of steel problem

    Get PDF
    Abstract. The main focus of this article is on the development of Adaptive Finite Element Method (AFEM) for the optimal control problem of laser surface hardening of steel governed by a dynamical system consisting of a semi-linear parabolic equation and an ordinary differential equation using Dual Weighted Residual Method (DWR). A posteriori error estimators using DWR method have been developed when a continuous piecewise linear discretization has been used for the finite element approximation of space variables and a discontinuous Galerkin method has been used for time and control discretizations. Further numerical results obtained are presented are compared with residual method numerical results. Key Words. Laser surface of steel problem, Adaptive finite element methods, Dual weighted residual methods, a posteriori error estimates. 1

    An adaptive finite element method for laser surface hardening of steel problem

    Get PDF
    ACMAC’s PrePrint Repository aim is to enable open access to the scholarly output of ACMAC

    Adaptive asynchronous time-stepping, stopping criteria, and a posteriori error estimates for fixed-stress iterative schemes for coupled poromechanics problems

    Get PDF
    In this paper we develop adaptive iterative coupling schemes for the Biot system modeling coupled poromechanics problems. We particularly consider the space-time formulation of the fixed-stress iterative scheme, in which we first solve the problem of flow over the whole space-time interval, then exploiting the space-time information for solving the mechanics. Two common discretizations of this algorithm are then introduced based on two coupled mixed finite element methods in-space and the backward Euler scheme in-time. Therefrom, adaptive fixed-stress algorithms are build on conforming reconstructions of the pressure and displacement together with equilibrated flux and stresses reconstructions. These ingredients are used to derive a posteriori error estimates for the fixed-stress algorithms, distinguishing the different error components, namely the spatial discretization, the temporal discretization, and the fixed-stress iteration components. Precisely, at the iteration k≥1k\geq 1 of the adaptive algorithm, we prove that our estimate gives a guaranteed and fully computable upper bound on the energy-type error measuring the difference between the exact and approximate pressure and displacement. These error components are efficiently used to design adaptive asynchronous time-stepping and adaptive stopping criteria for the fixed-stress algorithms. Numerical experiments illustrate the efficiency of our estimates and the performance of the adaptive iterative coupling algorithms

    A Posteriori Error Estimation for the p-curl Problem

    Full text link
    We derive a posteriori error estimates for a semi-discrete finite element approximation of a nonlinear eddy current problem arising from applied superconductivity, known as the pp-curl problem. In particular, we show the reliability for non-conforming N\'{e}d\'{e}lec elements based on a residual type argument and a Helmholtz-Weyl decomposition of W0p(curl;Ω)W^p_0(\text{curl};\Omega). As a consequence, we are also able to derive an a posteriori error estimate for a quantity of interest called the AC loss. The nonlinearity for this form of Maxwell's equation is an analogue of the one found in the pp-Laplacian. It is handled without linearizing around the approximate solution. The non-conformity is dealt by adapting error decomposition techniques of Carstensen, Hu and Orlando. Geometric non-conformities also appear because the continuous problem is defined over a bounded C1,1C^{1,1} domain while the discrete problem is formulated over a weaker polyhedral domain. The semi-discrete formulation studied in this paper is often encountered in commercial codes and is shown to be well-posed. The paper concludes with numerical results confirming the reliability of the a posteriori error estimate.Comment: 32 page
    • …
    corecore