862 research outputs found

    A posteriori error analysis for elliptic pdes on domains with complicated structures

    Get PDF
    Summary.: The discretisation of boundary value problems on complicated domains cannot resolve all geometric details such as small holes or pores. The model problem of this paper consists of a triangulated polygonal domain with holes of a size of the mesh-width at most and mixed boundary conditions for the Poisson equation. Reliable and efficient a posteriori error estimates are presented for a fully numerical discretisation with conforming piecewise affine finite elements. Emphasis is on technical difficulties with the numerical approximation of the domain and their influence on the constants in the reliability and efficiency estimate

    Efficient Resolution of Anisotropic Structures

    Get PDF
    We highlight some recent new delevelopments concerning the sparse representation of possibly high-dimensional functions exhibiting strong anisotropic features and low regularity in isotropic Sobolev or Besov scales. Specifically, we focus on the solution of transport equations which exhibit propagation of singularities where, additionally, high-dimensionality enters when the convection field, and hence the solutions, depend on parameters varying over some compact set. Important constituents of our approach are directionally adaptive discretization concepts motivated by compactly supported shearlet systems, and well-conditioned stable variational formulations that support trial spaces with anisotropic refinements with arbitrary directionalities. We prove that they provide tight error-residual relations which are used to contrive rigorously founded adaptive refinement schemes which converge in L2L_2. Moreover, in the context of parameter dependent problems we discuss two approaches serving different purposes and working under different regularity assumptions. For frequent query problems, making essential use of the novel well-conditioned variational formulations, a new Reduced Basis Method is outlined which exhibits a certain rate-optimal performance for indefinite, unsymmetric or singularly perturbed problems. For the radiative transfer problem with scattering a sparse tensor method is presented which mitigates or even overcomes the curse of dimensionality under suitable (so far still isotropic) regularity assumptions. Numerical examples for both methods illustrate the theoretical findings

    Adaptive Numerical Methods for PDEs

    Get PDF
    This collection contains the extended abstracts of the talks given at the Oberwolfach Conference on “Adaptive Numerical Methods for PDEs”, June 10th - June 16th, 2007. These talks covered various aspects of a posteriori error estimation and mesh as well as model adaptation in solving partial differential equations. The topics ranged from the theoretical convergence analysis of self-adaptive methods, over the derivation of a posteriori error estimates for the finite element Galerkin discretization of various types of problems to the practical implementation and application of adaptive methods

    An adaptive octree finite element method for PDEs posed on surfaces

    Full text link
    The paper develops a finite element method for partial differential equations posed on hypersurfaces in RN\mathbb{R}^N, N=2,3N=2,3. The method uses traces of bulk finite element functions on a surface embedded in a volumetric domain. The bulk finite element space is defined on an octree grid which is locally refined or coarsened depending on error indicators and estimated values of the surface curvatures. The cartesian structure of the bulk mesh leads to easy and efficient adaptation process, while the trace finite element method makes fitting the mesh to the surface unnecessary. The number of degrees of freedom involved in computations is consistent with the two-dimension nature of surface PDEs. No parametrization of the surface is required; it can be given implicitly by a level set function. In practice, a variant of the marching cubes method is used to recover the surface with the second order accuracy. We prove the optimal order of accuracy for the trace finite element method in H1H^1 and L2L^2 surface norms for a problem with smooth solution and quasi-uniform mesh refinement. Experiments with less regular problems demonstrate optimal convergence with respect to the number of degrees of freedom, if grid adaptation is based on an appropriate error indicator. The paper shows results of numerical experiments for a variety of geometries and problems, including advection-diffusion equations on surfaces. Analysis and numerical results of the paper suggest that combination of cartesian adaptive meshes and the unfitted (trace) finite elements provide simple, efficient, and reliable tool for numerical treatment of PDEs posed on surfaces

    hp-Adaptive composite discontinuous Galerkin methods for elliptic eigenvalue problems on complicated domains

    Get PDF
    In this paper we develop the a posteriori error estimation of hp-adaptive discontinuous Galerkin composite finite element methods (DGFEMs) for the discretization of second-order elliptic eigenvalue problems. DGFEMs allow for the approximation of problems posed on computational domains which may contain local geometric features. The dimension of the composite finite element space is independent of the number of geometric features. This is in contrast with standard finite element methods, as the minimal number of elements needed to represent the underlying domain can be very large and so the dimension of the finite element space. Computable upper bounds on the error for both eigenvalues and eigenfunctions are derived. Numerical experiments highlighting the practical application of the proposed estimators within an automatic hp-adaptive refinement procedure will be presented

    Hierarchical interpolative factorization for elliptic operators: differential equations

    Full text link
    This paper introduces the hierarchical interpolative factorization for elliptic partial differential equations (HIF-DE) in two (2D) and three dimensions (3D). This factorization takes the form of an approximate generalized LU/LDL decomposition that facilitates the efficient inversion of the discretized operator. HIF-DE is based on the multifrontal method but uses skeletonization on the separator fronts to sparsify the dense frontal matrices and thus reduce the cost. We conjecture that this strategy yields linear complexity in 2D and quasilinear complexity in 3D. Estimated linear complexity in 3D can be achieved by skeletonizing the compressed fronts themselves, which amounts geometrically to a recursive dimensional reduction scheme. Numerical experiments support our claims and further demonstrate the performance of our algorithm as a fast direct solver and preconditioner. MATLAB codes are freely available.Comment: 37 pages, 13 figures, 12 tables; to appear, Comm. Pure Appl. Math. arXiv admin note: substantial text overlap with arXiv:1307.266

    Review of discontinuous Galerkin finite element methods for partial differential equations on complicated domains

    Get PDF
    The numerical approximation of partial differential equations (PDEs) posed on complicated geometries, which include a large number of small geometrical features or microstructures, represents a challenging computational problem. Indeed, the use of standard mesh generators, employing simplices or tensor product elements, for example, naturally leads to very fine finite element meshes, and hence the computational effort required to numerically approximate the underlying PDE problem may be prohibitively expensive. As an alternative approach, in this article we present a review of composite/agglomerated discontinuous Galerkin finite element methods (DGFEMs) which employ general polytopic elements. Here, the elements are typically constructed as the union of standard element shapes; in this way, the minimal dimension of the underlying composite finite element space is independent of the number of geometrical features. In particular, we provide an overview of hp-version inverse estimates and approximation results for general polytopic elements, which are sharp with respect to element facet degeneration. On the basis of these results, a priori error bounds for the hp-DGFEM approximation of both second-order elliptic and first-order hyperbolic PDEs will be derived. Finally, we present numerical experiments which highlight the practical application of DGFEMs on meshes consisting of general polytopic elements
    • …
    corecore