990 research outputs found

    Naive possibilistic classifiers for imprecise or uncertain numerical data

    Get PDF
    International audienceIn real-world problems, input data may be pervaded with uncertainty. In this paper, we investigate the behavior of naive possibilistic classifiers, as a counterpart to naive Bayesian ones, for dealing with classification tasks in the presence of uncertainty. For this purpose, we extend possibilistic classifiers, which have been recently adapted to numerical data, in order to cope with uncertainty in data representation. Here the possibility distributions that are used are supposed to encode the family of Gaussian probabilistic distributions that are compatible with the considered dataset. We consider two types of uncertainty: (i) the uncertainty associated with the class in the training set, which is modeled by a possibility distribution over class labels, and (ii) the imprecision pervading attribute values in the testing set represented under the form of intervals for continuous data. Moreover, the approach takes into account the uncertainty about the estimation of the Gaussian distribution parameters due to the limited amount of data available. We first adapt the possibilistic classification model, previously proposed for the certain case, in order to accommodate the uncertainty about class labels. Then, we propose an algorithm based on the extension principle to deal with imprecise attribute values. The experiments reported show the interest of possibilistic classifiers for handling uncertainty in data. In particular, the probability-to-possibility transform-based classifier shows a robust behavior when dealing with imperfect data

    Possibilistic classifiers for numerical data

    Get PDF
    International audienceNaive Bayesian Classifiers, which rely on independence hypotheses, together with a normality assumption to estimate densities for numerical data, are known for their simplicity and their effectiveness. However, estimating densities, even under the normality assumption, may be problematic in case of poor data. In such a situation, possibility distributions may provide a more faithful representation of these data. Naive Possibilistic Classifiers (NPC), based on possibility theory, have been recently proposed as a counterpart of Bayesian classifiers to deal with classification tasks. There are only few works that treat possibilistic classification and most of existing NPC deal only with categorical attributes. This work focuses on the estimation of possibility distributions for continuous data. In this paper we investigate two kinds of possibilistic classifiers. The first one is derived from classical or flexible Bayesian classifiers by applying a probability–possibility transformation to Gaussian distributions, which introduces some further tolerance in the description of classes. The second one is based on a direct interpretation of data in possibilistic formats that exploit an idea of proximity between data values in different ways, which provides a less constrained representation of them. We show that possibilistic classifiers have a better capability to detect new instances for which the classification is ambiguous than Bayesian classifiers, where probabilities may be poorly estimated and illusorily precise. Moreover, we propose, in this case, an hybrid possibilistic classification approach based on a nearest-neighbour heuristics to improve the accuracy of the proposed possibilistic classifiers when the available information is insufficient to choose between classes. Possibilistic classifiers are compared with classical or flexible Bayesian classifiers on a collection of benchmarks databases. The experiments reported show the interest of possibilistic classifiers. In particular, flexible possibilistic classifiers perform well for data agreeing with the normality assumption, while proximity-based possibilistic classifiers outperform others in the other cases. The hybrid possibilistic classification exhibits a good ability for improving accuracy

    Project scheduling under uncertainty using fuzzy modelling and solving techniques

    Get PDF
    In the real world, projects are subject to numerous uncertainties at different levels of planning. Fuzzy project scheduling is one of the approaches that deal with uncertainties in project scheduling problem. In this paper, we provide a new technique that keeps uncertainty at all steps of the modelling and solving procedure by considering a fuzzy modelling of the workload inspired from the fuzzy/possibilistic approach. Based on this modelling, two project scheduling techniques, Resource Constrained Scheduling and Resource Leveling, are considered and generalized to handle fuzzy parameters. We refer to these problems as the Fuzzy Resource Constrained Project Scheduling Problem (FRCPSP) and the Fuzzy Resource Leveling Problem (FRLP). A Greedy Algorithm and a Genetic Algorithm are provided to solve FRCPSP and FRLP respectively, and are applied to civil helicopter maintenance within the framework of a French industrial project called Helimaintenance

    Possibilistic and fuzzy clustering methods for robust analysis of non-precise data

    Get PDF
    This work focuses on robust clustering of data affected by imprecision. The imprecision is managed in terms of fuzzy sets. The clustering process is based on the fuzzy and possibilistic approaches. In both approaches the observations are assigned to the clusters by means of membership degrees. In fuzzy clustering the membership degrees express the degrees of sharing of the observations to the clusters. In contrast, in possibilistic clustering the membership degrees are degrees of typicality. These two sources of information are complementary because the former helps to discover the best fuzzy partition of the observations while the latter reflects how well the observations are described by the centroids and, therefore, is helpful to identify outliers. First, a fully possibilistic k-means clustering procedure is suggested. Then, in order to exploit the benefits of both the approaches, a joint possibilistic and fuzzy clustering method for fuzzy data is proposed. A selection procedure for choosing the parameters of the new clustering method is introduced. The effectiveness of the proposal is investigated by means of simulated and real-life data

    Fuzzy uncertainty modelling for project planning; application to helicopter maintenance

    Get PDF
    Maintenance is an activity of growing interest specially for critical systems. Particularly, aircraft maintenance costs are becoming an important issue in the aeronautical industry. Managing an aircraft maintenance center is a complex activity. One of the difficulties comes from the numerous uncertainties that affect the activity and disturb the plans at short and medium term. Based on a helicopter maintenance planning and scheduling problem, we study in this paper the integration of uncertainties into tactical and operational multiresource, multi-project planning (respectively Rough Cut Capacity Planning and Resource Constraint Project Scheduling Problem). Our main contributions are in modelling the periodic workload on tactical level considering uncertainties in macro-tasks work contents, and modelling the continuous workload on operational level considering uncertainties in tasks durations. We model uncertainties by a fuzzy/possibilistic approach instead of a stochastic approach since very limited data are available. We refer to the problems as the Fuzzy RoughCut Capacity Problem (FRCCP) and the Fuzzy Resource Constraint Project Scheduling Problem (RCPSP).We apply our models to helicopter maintenance activity within the frame of the Helimaintenance project, an industrial project approved by the French Aerospace Valley cluster which aims at building a center for civil helicopter maintenance

    Aspects of dealing with imperfect data in temporal databases

    Get PDF
    In reality, some objects or concepts have properties with a time-variant or time-related nature. Modelling these kinds of objects or concepts in a (relational) database schema is possible, but time-variant and time-related attributes have an impact on the consistency of the entire database. Therefore, temporal database models have been proposed to deal with this. Time itself can be at the source of imprecision, vagueness and uncertainty, since existing time measuring devices are inherently imperfect. Accordingly, human beings manage time using temporal indications and temporal notions, which may contain imprecision, vagueness and uncertainty. However, the imperfection in human-used temporal indications is supported by human interpretation, whereas information systems need extraordinary support for this. Several proposals for dealing with such imperfections when modelling temporal aspects exist. Some of these proposals consider the basis of the system to be the conversion of the specificity of temporal notions between used temporal expressions. Other proposals consider the temporal indications in the used temporal expressions to be the source of imperfection. In this chapter, an overview is given, concerning the basic concepts and issues related to the modelling of time as such or in (relational) database models and the imperfections that may arise during or as a result of this modelling. Next to this, a novel and currently researched technique for handling some of these imperfections is presented

    A possibilistic approach to latent structure analysis for symmetric fuzzy data.

    Get PDF
    In many situations the available amount of data is huge and can be intractable. When the data set is single valued, latent structure models are recognized techniques, which provide a useful compression of the information. This is done by considering a regression model between observed and unobserved (latent) fuzzy variables. In this paper, an extension of latent structure analysis to deal with fuzzy data is proposed. Our extension follows the possibilistic approach, widely used both in the cluster and regression frameworks. In this case, the possibilistic approach involves the formulation of a latent structure analysis for fuzzy data by optimization. Specifically, a non-linear programming problem in which the fuzziness of the model is minimized is introduced. In order to show how our model works, the results of two applications are given.Latent structure analysis, symmetric fuzzy data set, possibilistic approach.

    Unsupervised tracking of time-evolving data streams and an application to short-term urban traffic flow forecasting

    Get PDF
    I am indebted to many people for their help and support I receive during my Ph.D. study and research at DIBRIS-University of Genoa. First and foremost, I would like to express my sincere thanks to my supervisors Prof.Dr. Masulli, and Prof.Dr. Rovetta for the invaluable guidance, frequent meetings, and discussions, and the encouragement and support on my way of research. I thanks all the members of the DIBRIS for their support and kindness during my 4 years Ph.D. I would like also to acknowledge the contribution of the projects Piattaforma per la mobili\ue0 Urbana con Gestione delle INformazioni da sorgenti eterogenee (PLUG-IN) and COST Action IC1406 High Performance Modelling and Simulation for Big Data Applications (cHiPSet). Last and most importantly, I wish to thanks my family: my wife Shaimaa who stays with me through the joys and pains; my daughter and son whom gives me happiness every-day; and my parents for their constant love and encouragement

    Classifier ensemble for uncertain data stream classification

    Get PDF
    Currently available algorithms for data stream classification are all designed to handle precise data, while data with uncertainty or imperfection is quite natural and widely seen in real-life applications. Uncertainty can arise in attribute values as well as in class values. In this paper, we focus on the classification of streaming data that has different degrees of uncertainty within class values. We propose two types of ensemble based algorithms, Static Classifier Ensemble (SCE) and Dynamic Classifier Ensemble (DCE) for mining uncertain data streams. Experiments on both synthetic and real-life data set are made to compare and contrast our proposed algorithms. The experimental results reveal that DCE algorithm outperforms SCE algorithm
    corecore