1,609 research outputs found

    BrlAPI: Simple, Portable, Concurrent, Application-level Control of Braille Terminals

    Get PDF
    Screen readers can drive braille devices for allowing visually impaired users to access computer environments, by providing them the same information as sighted users. But in some cases, this view is not easy to use on a braille device. In such cases, it would be much more useful to let applications provide their own braille feedback, specially adapted to visually impaired users. Such applications would then need the ability to output braille ; however, allowing both screen readers and applications access a wide panel of braille devices is not a trivial task. We present an abstraction layer that applications may use to communicate with braille devices. They do not need to deal with the specificities of each device, but can do so if necessary. We show how several applications can communicate with one braille device concurrently, with BrlAPI making sensible choices about which application eventually gets access to the device. The description of a widely used implementation of BrlAPI is included

    Working Effectively with People who are Blind or Visually Impaired

    Get PDF
    This brochure on peoples who are blind or visually impaired and The Americans with Disabilities Act (ADA) is one of a series on human resources practices and workplace accommodations for persons with disabilities edited by Susanne M. Bruyère, Ph.D., CRC, SPHR, Director, Program on Employment and Disability, School of Industrial and Labor Relations – Extension Division, Cornell University

    An Arabic Optical Braille Recognition System

    No full text
    Technology has shown great promise in providing access to textual information for visually impaired people. Optical Braille Recognition (OBR) allows people with visual impairments to read volumes of typewritten documents with the help of flatbed scanners and OBR software. This project looks at developing a system to recognize an image of embossed Arabic Braille and then convert it to text. It particularly aims to build fully functional Optical Arabic Braille Recognition system. It has two main tasks, first is to recognize printed Braille cells, and second is to convert them to regular text. Converting Braille to text is not simply a one to one mapping, because one cell may represent one symbol (alphabet letter, digit, or special character), two or more symbols, or part of a symbol. Moreover, multiple cells may represent a single symbol

    Human Computer Interface for Victims using FPGA

    Get PDF
    Visually impaired people face many challenges in the society; particularly students with visual impairments face unique challenges in the education environment. They struggle a lot to access the information, so to resolve this obstacle in reading and to allow the visually impaired students to fully access and participate in the curriculum with the greatest possible level of independence, a Braille transliteration system using VLSI is designed. Here Braille input is given to FPGA Virtex-4 kit via Braille keyboard. The Braille language is converted into English language by decoding logic in VHDL/Verilog and then the corresponding alphabet letter is converted into speech signal with the help of the algorithm. Speaker is used for the voice output. This project allows the visually impaired people to get literate also the person can get a conformation about what is being typed, every time that character is being pressed, this prevents the occurrence of mistakes

    SURVEY: AUDIO READING SYSTEM FOR BLIND PERSONS

    Get PDF
    Audio Reading System is used to help blind people to read the text based on camera as input device and speaker as output device. The system used the OCR algorithm to extract the text from input image and Text-to-Speech algorithm to convert text into corresponding voice. In this paper, we review newest research of audio reading system. We discuss the hardware and software, which is used, on system for different types approach. Finally, the result of this paper that is: Raspberry pi, python and tesseract are best tools used in Audio reading system. Also the braille and finger print devices are not efficient and not easy to use

    Hardware-based text-to-braille translation

    Get PDF
    Braille, as a special written method of communication for the blind, has been globally accepted for years. It gives blind people another chance to learn and communicate more efficiently with the rest of the world. It also makes possible the translation of printed languages into a written language which is recognisable for blind people. Recently, Braille is experiencing a decreasing popularity due to the use of alternative technologies, like speech synthesis. However, as a form of literacy, Braille is still playing a significant role in the education of people with visual impairments. With the development of electronic technology, Braille turned out to be well suited to computer-aided production because of its coded forms. Software based text-to-Braille translation has been proved to be a successful solution in Assistive Technology (AT). However, the feasibility and advantages of the algorithm reconfiguration based on hardware implementation have rarely been substantially discussed. A hardware-based translation system with algorithm reconfiguration is able to supply greater throughput than a software-based system. Further, it is also expected as a single component integrated in a multi-functional Braille system on a chip.Therefore, this thesis presents the development of a system for text-to-Braille translation implemented in hardware. Differing from most commercial methods, this translator is able to carry out the translation in hardware instead of using software. To find a particular translation algorithm which is suitable for a hardware-based solution, the history of, and previous contributions to Braille translation are introduced and discussed. It is concluded that Markov systems, a formal language theory, were highly suitable for application to hardware based Braille translation. Furthermore, the text-to-Braille algorithm is reconfigured to achieve parallel processing to accelerate the translation speed. Characteristics and advantages of Field Programmable Gate Arrays (FPGAs), and application of Very High Speed Integrated Circuit Hardware Description Language (VHDL) are introduced to explain how the translating algorithm can be transformed to hardware. Using a Xilinx hardware development platform, the algorithm for text-to-Braille translation is implemented and the structure of the translator is described hierarchically

    A new dynamic tactile display for reconfigurable braille: implementation and tests

    Get PDF
    Different tactile interfaces have been proposed to represent either text (braille) or, in a few cases, tactile large-area screens as replacements for visual displays. None of the implementations so far can be customized to match users' preferences, perceptual differences and skills. Optimal choices in these respects are still debated; we approach a solution by designing a flexible device allowing the user to choose key parameters of tactile transduction. We present here a new dynamic tactile display, a 8 × 8 matrix of plastic pins based on well-established and reliable piezoelectric technology to offer high resolution (pin gap 0.7mm) as well as tunable strength of the pins displacement, and refresh rate up to 50s(−1). It can reproduce arbitrary patterns, allowing it to serve the dual purpose of providing, depending on contingent user needs, tactile rendering of non-character information, and reconfigurable braille rendering. Given the relevance of the latter functionality for the expected average user, we considered testing braille encoding by volunteers a benchmark of primary importance. Tests were performed to assess the acceptance and usability with minimal training, and to check whether the offered flexibility was indeed perceived by the subject as an added value compared to conventional braille devices. Different mappings between braille dots and actual tactile pins were implemented to match user needs. Performances of eight experienced braille readers were defined as the fraction of correct identifications of rendered content. Different information contents were tested (median performance on random strings, words, sentences identification was about 75%, 85%, 98%, respectively, with a significant increase, p < 0.01), obtaining statistically significant improvements in performance during the tests (p < 0.05). Experimental results, together with qualitative ratings provided by the subjects, show a good acceptance and the effectiveness of the proposed solution

    Feeling what you hear: tactile feedback for navigation of audio graphs

    Get PDF
    Access to digitally stored numerical data is currently very limited for sight impaired people. Graphs and visualizations are often used to analyze relationships between numerical data, but the current methods of accessing them are highly visually mediated. Representing data using audio feedback is a common method of making data more accessible, but methods of navigating and accessing the data are often serial in nature and laborious. Tactile or haptic displays could be used to provide additional feedback to support a point-and-click type interaction for the visually impaired. A requirements capture conducted with sight impaired computer users produced a review of current accessibility technologies, and guidelines were extracted for using tactile feedback to aid navigation. The results of a qualitative evaluation with a prototype interface are also presented. Providing an absolute position input device and tactile feedback allowed the users to explore the graph using tactile and proprioceptive cues in a manner analogous to point-and-click techniques
    corecore