1,639 research outputs found

    A population model based on a Poisson line tessellation

    Get PDF
    International audienceIn this paper, we introduce a new population model. Taking the geometry of cities into account by adding roads, we build a Cox process driven by a Poisson line tessellation. We perform several shot-noise computations according to various generalizations of our original process. This allows us to derive analytical formulas for the uplink coverage probability in each case

    Three-dimensional random Voronoi tessellations: From cubic crystal lattices to Poisson point processes

    Get PDF
    We perturb the SC, BCC, and FCC crystal structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter a, and analyze the topological and metrical properties of the resulting Voronoi Tessellations (VT). The topological properties of the VT of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. For weak noise, the mean area of the perturbed BCC and FCC crystals VT increases quadratically with a. In the case of perturbed SCC crystals, there is an optimal amount of noise that minimizes the mean area of the cells. Already for a moderate noise (a>0.5), the properties of the three perturbed VT are indistinguishable, and for intense noise (a>2), results converge to the Poisson-VT limit. Notably, 2-parameter gamma distributions are an excellent model for the empirical of of all considered properties. The VT of the perturbed BCC and FCC structures are local maxima for the isoperimetric quotient, which measures the degre of sphericity of the cells, among space filling VT. In the BCC case, this suggests a weaker form of the recentluy disproved Kelvin conjecture. Due to the fluctuations of the shape of the cells, anomalous scalings with exponents >3/2 is observed between the area and the volumes of the cells, and, except for the FCC case, also for a->0. In the Poisson-VT limit, the exponent is about 1.67. As the number of faces is positively correlated with the sphericity of the cells, the anomalous scaling is heavily reduced when we perform powerlaw fits separately on cells with a specific number of faces

    Voronoi Tessellations and the Cosmic Web: Spatial Patterns and Clustering across the Universe

    Full text link
    The spatial cosmic matter distribution on scales of a few up to more than a hundred Megaparsec displays a salient and pervasive foamlike pattern. Voronoi tessellations are a versatile and flexible mathematical model for such weblike spatial patterns. They would be the natural asymptotic result of an evolution in which low-density expanding void regions dictate the spatial organization of the Megaparsec Universe, while matter assembles in high-density filamentary and wall-like interstices between the voids. We describe the results of ongoing investigations of a variety of aspects of cosmologically relevant spatial distributions and statistics within the framework of Voronoi tessellations. Particularly enticing is the finding of a profound scaling of both clustering strength and clustering extent for the distribution of tessellation nodes, suggestive for the clustering properties of galaxy clusters. Cellular patterns may be the source of an intrinsic ``geometrically biased'' clustering.Comment: 10 pages, 9 figures, accepted for publication as long paper in proceedings Fourth International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007), ed. C. Gold, IEEE Computer Society, July 2007. For high-res version see http://www.astro.rug.nl/~weygaert/tim1publication/vorwey.isvd07.pd

    Structure in the 3D Galaxy Distribution: I. Methods and Example Results

    Full text link
    Three methods for detecting and characterizing structure in point data, such as that generated by redshift surveys, are described: classification using self-organizing maps, segmentation using Bayesian blocks, and density estimation using adaptive kernels. The first two methods are new, and allow detection and characterization of structures of arbitrary shape and at a wide range of spatial scales. These methods should elucidate not only clusters, but also the more distributed, wide-ranging filaments and sheets, and further allow the possibility of detecting and characterizing an even broader class of shapes. The methods are demonstrated and compared in application to three data sets: a carefully selected volume-limited sample from the Sloan Digital Sky Survey redshift data, a similarly selected sample from the Millennium Simulation, and a set of points independently drawn from a uniform probability distribution -- a so-called Poisson distribution. We demonstrate a few of the many ways in which these methods elucidate large scale structure in the distribution of galaxies in the nearby Universe.Comment: Re-posted after referee corrections along with partially re-written introduction. 80 pages, 31 figures, ApJ in Press. For full sized figures please download from: http://astrophysics.arc.nasa.gov/~mway/lss1.pd

    ZOBOV: a parameter-free void-finding algorithm

    Full text link
    ZOBOV (ZOnes Bordering On Voidness) is an algorithm that finds density depressions in a set of points, without any free parameters, or assumptions about shape. It uses the Voronoi tessellation to estimate densities, which it uses to find both voids and subvoids. It also measures probabilities that each void or subvoid arises from Poisson fluctuations. This paper describes the ZOBOV algorithm, and the results from its application to the dark-matter particles in a region of the Millennium Simulation. Additionally, the paper points out an interesting high-density peak in the probability distribution of dark-matter particle densities.Comment: 10 pages, 8 figures, MNRAS, accepted. Added explanatory figures, and better edge-detection methods. ZOBOV code available at http://www.ifa.hawaii.edu/~neyrinck/vobo
    • …
    corecore