314 research outputs found

    On robustness and dynamics in (un)balanced coalitional games

    Get PDF
    We build upon control theoretic concepts like robustness and dynamics to better accommodate all the situations where the coalitions’ values are uncertain and subject to changes over time. The proposed robust dynamic framework provides an alternative perspective on the study of sequences of coalitional games or interval valued games. For a sequence of coalitional games, either balanced or unbalanced, we analyze the key roles of instantaneous and average games. Instantaneous games are obtained by freezing the coalitions’ values at a given time and come into play when coalitions’ values are known. On the other hand, average games are derived from averaging the coalitions’ values up to a given time and are key part of our analysis when coalitions’ values are unknown. The main theoretical contribution of our paper is a design method of allocation rules that return solutions in the core and/or ϵ\epsilon-core of the instantaneous and average games. Theoretical results are then specialized to a simulated example to shed light on the impact of the design method and on the performance of the resulting allocation rules

    Opinion Dynamics in Social Networks through Mean-Field Games

    Get PDF
    Emulation, mimicry, and herding behaviors are phenomena that are observed when multiple social groups interact. To study such phenomena, we consider in this paper a large population of homogeneous social networks. Each such network is characterized by a vector state, a vector-valued controlled input and a vector-valued exogenous disturbance. The controlled input of each network is to align its state to the mean distribution of other networks’ states in spite of the actions of the disturbance. One of the contributions of this paper is a detailed analysis of the resulting mean field game for the cases of both polytopic and L2 bounds on controls and disturbances. A second contribution is the establishment of a robust mean-field equilibrium, that is, a solution including the worst-case value function, the state feedback best-responses for the controlled inputs and worst-case disturbances, and a density evolution. This solution is characterized by the property that no player can benefit from a unilateral deviation even in the presence of the disturbance. As a third contribution, microscopic and macroscopic analyses are carried out to show convergence properties of the population distribution using stochastic stability theory

    Temporal Logic Control for Stochastic Linear Systems using Abstraction Refinement of Probabilistic Games

    Full text link
    We consider the problem of computing the set of initial states of a dynamical system such that there exists a control strategy to ensure that the trajectories satisfy a temporal logic specification with probability 1 (almost-surely). We focus on discrete-time, stochastic linear dynamics and specifications given as formulas of the Generalized Reactivity(1) fragment of Linear Temporal Logic over linear predicates in the states of the system. We propose a solution based on iterative abstraction-refinement, and turn-based 2-player probabilistic games. While the theoretical guarantee of our algorithm after any finite number of iterations is only a partial solution, we show that if our algorithm terminates, then the result is the set of satisfying initial states. Moreover, for any (partial) solution our algorithm synthesizes witness control strategies to ensure almost-sure satisfaction of the temporal logic specification. We demonstrate our approach on an illustrative case study.Comment: Technical report accompanying HSCC'15 pape
    • …
    corecore