25 research outputs found

    Wearable smart textiles for long-term electrocardiography monitoring : a review

    Get PDF
    The continuous and long-term measurement and monitoring of physiological signals such as electrocardiography (ECG) are very important for the early detection and treatment of heart disorders at an early stage prior to a serious condition occurring. The increasing demand for the continuous monitoring of the ECG signal needs the rapid development of wearable electronic technology. During wearable ECG monitoring, the electrodes are the main components that affect the signal quality and comfort of the user. This review assesses the application of textile electrodes for ECG monitoring from the fundamentals to the latest developments and prospects for their future fate. The fabrication techniques of textile electrodes and their performance in terms of skin–electrode contact impedance, motion artifacts and signal quality are also reviewed and discussed. Textile electrodes can be fabricated by integrating thin metal fiber during the manufacturing stage of textile products or by coating textiles with conductive materials like metal inks, carbon mate-rials, or conductive polymers. The review also discusses how textile electrodes for ECG function via direct skin contact or via a non-contact capacitive coupling. Finally, the current intensive and promising research towards finding textile-based ECG electrodes with better comfort and signal quality in the fields of textile, material, medical and electrical engineering are presented as a perspective

    A washable silver-printed textile electrode for ECG monitoring

    Get PDF
    Electrocardiography (ECG) is one of the most widely used diagnostic methods to examine the development of cardiovascular diseases (CVD). It is important to have a long-term continuous ECG recording to properly monitor the heart activity, which can be measured by placing two or more electrodes on the skin. Ag/AgCl gelled electrodes are often used for the ECG measurement, but they are not suitable for long-term monitoring due to the dehydration of the gel over time and skin irritation. Textile-based electrodes could have an important role in replacing the gelled electrodes and avoid their associated problems. This paper focuses on the development of a textile-based electrode and studying its ECG detecting performance. We developed silver printed textile electrodes via a flat-screen printing of silver ink on knitted polyester fabric. The surface resistance of silver-coated PET fabric was 1.78 Ω/sq and 3.77 Ω/sq before and after washing, respectively. Stretching of the conductive fabric from 5% to 40% caused a 6% to 18.28% increase in surface resistance. The silver-printed PET fabric stayed reasonably conductive after washing and stretching which makes it suitable for wearable applications. Moreover, the ECG measurement at static condition showed that the signal quality collected before and after washing were comparable with the Ag/AgCl standard electrodes. The P, QRS, T waveforms, and heartbeat before washing in respective order were 0.09 mV, 1.20 mV, 0.30 mV for the silver printed fabric electrode and 72 bpm, and 0.10 mV, 1.21 mV, 0.30 mV, and 76 bpm for Ag/AgCl standard electrode

    Electrically Conductive Cotton Textile and Its Applications

    Get PDF
    Electronic textiles (e-textiles) have been considered as important applications in wearable electronics, which can combine the functionality of smart electronic devices with the comfort and flexibility of stylish clothing. Herein, we have successfully prepared a conductive textile via electroless deposition onto cotton textiles by using a three-step treatment process. The cotton textiles are first dipped in P4VP-SU8 solution to form a uniform layer for the subsequent absorption of silver ions. Then, the cotton textiles are immersed in silver nitrate solution in preparation for the next step electroless deposition. The sheet resistance can be as low as 0.05 Ωsq-1. Two sensors were made based on the copper coated cotton textiles. One is flexible pressure sensor, the other is ECG sensor. Both sensors performed well, proving this method is a promising candidate for applications in the fabrication of functional textile-based wearable devices

    Textile chemical sensors based on conductive polymers for the analysis of sweat

    Get PDF
    Wearable textile chemical sensors are promising devices due to the potential applications in medicine, sports activities and occupational safety and health. Reaching the maturity required for commercialization is a technology challenge that mainly involves material science because these sensors should be adapted to flexible and light-weight substrates to preserve the comfort of the wearer. Conductive polymers (CPs) are a fascinating solution to meet this demand, as they exhibit the mechanical properties of polymers, with an electrical conductivity typical of semiconductors. Moreover, their biocompatibility makes them promising candidates for effectively interfacing the human body. In particular, sweat analysis is very attractive to wearable technologies as perspiration is a naturally occurring process and sweat can be sampled non-invasively and continuously over time. This review discusses the role of CPs in the development of textile electrochemical sensors specifically designed for real-time sweat monitoring and the main challenges related to this topic

    The 3rd International Conference on the Challenges, Opportunities, Innovations and Applications in Electronic Textiles

    Get PDF
    This reprint is a collection of papers from the E-Textiles 2021 Conference and represents the state-of-the-art from both academia and industry in the development of smart fabrics that incorporate electronic and sensing functionality. The reprint presents a wide range of applications of the technology including wearable textile devices for healthcare applications such as respiratory monitoring and functional electrical stimulation. Manufacturing approaches include printed smart materials, knitted e-textiles and flexible electronic circuit assembly within fabrics and garments. E-textile sustainability, a key future requirement for the technology, is also considered. Supplying power is a constant challenge for all wireless wearable technologies and the collection includes papers on triboelectric energy harvesting and textile-based water-activated batteries. Finally, the application of textiles antennas in both sensing and 5G wireless communications is demonstrated, where different antenna designs and their response to stimuli are presented

    Tactile and Touchless Sensors Printed on Flexible Textile Substrates for Gesture Recognition

    Full text link
    Tesis por compendio[EN] The main objective of this thesis is the development of new sensors and actuators using Printed Electronics technology. For this, conductive, semiconductor and dielectric polymeric materials are used on flexible and/or elastic substrates. By means of suitable designs and application processes, it is possible to manufacture sensors capable of interacting with the environment. In this way, specific sensing functionalities can be incorporated into the substrates, such as textile fabrics. Additionally, it is necessary to include electronic systems capable of processing the data obtained, as well as its registration. In the development of these sensors and actuators, the physical properties of the different materials are precisely combined. For this, multilayer structures are designed where the properties of some materials interact with those of others. The result is a sensor capable of capturing physical variations of the environment, and convert them into signals that can be processed, and finally transformed into data. On the one hand, a tactile sensor printed on textile substrate for 2D gesture recognition was developed. This sensor consists of a matrix composed of small capacitive sensors based on a capacitor type structure. These sensors were designed in such a way that, if a finger or other object with capacitive properties, gets close enough, its behaviour varies, and it can be measured. The small sensors are arranged in this matrix as in a grid. Each sensor has a position that is determined by a row and a column. The capacity of each small sensor is periodically measured in order to assess whether significant variations have been produced. For this, it is necessary to convert the sensor capacity into a value that is subsequently digitally processed. On the other hand, to improve the effectiveness in the use of the developed 2D touch sensors, the way of incorporating an actuator system was studied. Thereby, the user receives feedback that the order or action was recognized. To achieve this, the capacitive sensor grid was complemented with an electroluminescent screen printed as well. The final prototype offers a solution that combines a 2D tactile sensor with an electroluminescent actuator on a printed textile substrate. Next, the development of a 3D gesture sensor was carried out using a combination of sensors also printed on textile substrate. In this type of 3D sensor, a signal is sent generating an electric field on the sensors. This is done using a transmission electrode located very close to them. The generated field is received by the reception sensors and converted to electrical signals. For this, the sensors are based on electrodes that act as receivers. If a person places their hands within the emission area, a disturbance of the electric field lines is created. This is due to the deviation of the lines to ground using the intrinsic conductivity of the human body. This disturbance affects the signals received by the electrodes. Variations captured by all electrodes are processed together and can determine the position and movement of the hand on the sensor surface. Finally, the development of an improved 3D gesture sensor was carried out. As in the previous development, the sensor allows contactless gesture detection, but increasing the detection range. In addition to printed electronic technology, two other textile manufacturing technologies were evaluated.[ES] La presente tesis doctoral tiene como objetivo fundamental el desarrollo de nuevos sensores y actuadores empleando la tecnología electrónica impresa, también conocida como Printed Electronics. Para ello, se emplean materiales poliméricos conductores, semiconductores y dieléctricos sobre sustratos flexibles y/o elásticos. Por medio de diseños y procesos de aplicación adecuados, es posible fabricar sensores capaces de interactuar con el entorno. De este modo, se pueden incorporar a los sustratos, como puedan ser tejidos textiles, funcionalidades específicas de medición del entorno y de respuesta ante cambios de este. Adicionalmente, es necesario incluir sistemas electrónicos, capaces de realizar el procesado de los datos obtenidos, así como de su registro. En el desarrollo de estos sensores y actuadores se combinan las propiedades físicas de los diferentes materiales de forma precisa. Para ello, se diseñan estructuras multicapa donde las propiedades de unos materiales interaccionan con las de los demás. El resultado es un sensor capaz de captar variaciones físicas del entorno, y convertirlas en señales que pueden ser procesadas y transformadas finalmente en datos. Por una parte, se ha desarrollado un sensor táctil impreso sobre sustrato textil para reconocimiento de gestos en 2D. Este sensor se compone de una matriz formada por pequeños sensores capacitivos basados en estructura de tipo condensador. Estos se han diseñado de forma que, si un dedo u otro objeto con propiedades capacitivas se aproxima suficientemente, su comportamiento varía, pudiendo ser medido. Los pequeños sensores están ordenados en dicha matriz como en una cuadrícula. Cada sensor tiene una posición que viene determinada por una fila y por una columna. Periódicamente se mide la capacidad de cada pequeño sensor con el fin de evaluar si ha sufrido variaciones significativas. Para ello es necesario convertir la capacidad del sensor en un valor que posteriormente es procesado digitalmente. Por otro lado, con el fin de mejorar la efectividad en el uso de los sensores táctiles 2D desarrollados, se ha estudiado el modo de incorporar un sistema actuador. De esta forma, el usuario recibe una retroalimentación indicando que la orden o acción ha sido reconocida. Para ello, se ha complementado la matriz de sensores capacitivos con una pantalla electroluminiscente también impresa. El resultado final ofrece una solución que combina un sensor táctil 2D con un actuador electroluminiscente realizado mediante impresión electrónica sobre sustrato textil. Posteriormente, se ha llevado a cabo el desarrollo de un sensor de gestos 3D empleando una combinación de sensores impresos también sobre sustrato textil. En este tipo de sensor 3D, se envía una señal que genera un campo eléctrico sobre los sensores impresos. Esto se lleva a cabo mediante un electrodo de transmisión situado muy cerca de ellos. El campo generado es recibido por los sensores y convertido a señales eléctricas. Para ello, los sensores se basan en electrodos que actúan de receptores. Si una persona coloca su mano dentro del área de emisión, se crea una perturbación de las líneas de los campos eléctricos. Esto es debido a la desviación de las líneas de campo a tierra utilizando la conductividad intrínseca del cuerpo humano. Esta perturbación cambia/afecta a las señales recibidas por los electrodos. Las variaciones captadas por todos los electrodos son procesadas de forma conjunta pudiendo determinar la posición y el movimiento de la mano sobre la superficie del sensor. Finalmente, se ha llevado a cabo el desarrollo de un sensor de gestos 3D mejorado. Al igual que el desarrollo anterior, permite la detección de gestos sin necesidad de contacto, pero incrementando la distancia de alcance. Además de la tecnología de impresión electrónica, se ha evaluado el empleo de otras dos tecnologías de fabricación textil.[CA] La present tesi doctoral té com a objectiu fonamental el desenvolupament de nous sensors i actuadors fent servir la tecnologia de electrònica impresa, també coneguda com Printed Electronics. Es va fer us de materials polimèrics conductors, semiconductors i dielèctrics sobre substrats flexibles i/o elàstics. Per mitjà de dissenys i processos d'aplicació adequats, és possible fabricar sensors capaços d'interactuar amb l'entorn. D'aquesta manera, es poden incorporar als substrats, com ara teixits tèxtils, funcionalitats específiques de mesurament de l'entorn i de resposta davant canvis d'aquest. Addicionalment, és necessari incloure sistemes electrònics, capaços de realitzar el processament de les dades obtingudes, així com del seu registre. En el desenvolupament d'aquests sensors i actuadors es combinen les propietats físiques dels diferents materials de forma precisa. Cal dissenyar estructures multicapa on les propietats d'uns materials interaccionen amb les de la resta. manera El resultat es un sensor capaç de captar variacions físiques de l'entorn, i convertirles en senyals que poden ser processades i convertides en dades. D'una banda, s'ha desenvolupat un sensor tàctil imprès sobre substrat tèxtil per a reconeixement de gestos en 2D. Aquest sensor es compon d'una matriu formada amb petits sensors capacitius basats en una estructura de tipus condensador. Aquests s'han dissenyat de manera que, si un dit o un altre objecte amb propietats capacitives s'aproxima prou, el seu comportament varia, podent ser mesurat. Els petits sensors estan ordenats en aquesta matriu com en una quadrícula. Cada sensor té una posició que ve determinada per una fila i per una columna. Periòdicament es mesura la capacitat de cada petit sensor per tal d'avaluar si ha sofert variacions significatives. Per a això cal convertir la capacitat del sensor a un valor que posteriorment és processat digitalment. D'altra banda, per tal de millorar l'efectivitat en l'ús dels sensors tàctils 2D desenvolupats, s'ha estudiat la manera d'incorporar un sistema actuador. D'aquesta forma, l'usuari rep una retroalimentació indicant que l'ordre o acció ha estat reconeguda. Per a això, s'ha complementat la matriu de sensors capacitius amb una pantalla electroluminescent també impresa. El resultat final ofereix una solució que combina un sensor tàctil 2D amb un actuador electroluminescent realitzat mitjançant impressió electrònica sobre substrat tèxtil. Posteriorment, s'ha dut a terme el desenvolupament d'un sensor de gestos 3D emprant una combinació d'un mínim de sensors impresos també sobre substrat tèxtil. En aquest tipus de sensor 3D, s'envia un senyal que genera un camp elèctric sobre els sensors impresos. Això es porta a terme mitjançant un elèctrode de transmissió situat molt a proper a ells. El camp generat és rebut pels sensors i convertit a senyals elèctrics. Per això, els sensors es basen en elèctrodes que actuen de receptors. Si una persona col·loca la seva mà dins de l'àrea d'emissió, es crea una pertorbació de les línies dels camps elèctrics. Això és a causa de la desviació de les línies de camp a terra utilitzant la conductivitat intrínseca de el cos humà. Aquesta pertorbació afecta als senyals rebudes pels elèctrodes. Les variacions captades per tots els elèctrodes són processades de manera conjunta per determinar la posició i el moviment de la mà sobre la superfície del sensor. Finalment, s'ha dut a terme el desenvolupament d'un sensor de gestos 3D millorat. A l'igual que el desenvolupament anterior, permet la detecció de gestos sense necessitat de contacte, però incrementant la distància d'abast. A més a més de la tecnologia d'impressió electrònica, s'ha avaluat emprar altres dues tecnologies de fabricació tèxtil.Ferri Pascual, J. (2020). Tactile and Touchless Sensors Printed on Flexible Textile Substrates for Gesture Recognition [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/153075TESISCompendi

    Smart Textiles Testing: A Roadmap to Standardized Test Methods for Safety and Quality-Control

    Get PDF
    Test methods for smart or electronic textiles (e-textiles) are critical to ensure product safety and industrial quality control. This paper starts with a review of three key aspects: (i) commercial e-textile products/technologies, (ii) safety and quality control issues observed or foreseen, and (iii) relevant standards published or in preparation worldwide. A total of twenty-two standards on smart textiles – by CEN TC 248/WG 31, IEC TC 124, ASTM D13.50, and AATCC RA111 technical committees – were identified; they cover five categories of e-textile applications: electrical, thermal, mechanical, optical, and physical environment. Based on the number of e-textile products currently commercially available and issues in terms of safety, efficiency, and durability, there is a critical need for test methods for thermal applications, as well as to a lesser degree, for energy harvesting and chemical and biological applications. The results of this study can be used as a roadmap for the development of new standardized test methods for safety & quality control of smart textiles

    Conception, development and evaluation of polymer-based screen-printed textile electrodes for biopotential monitoring

    Get PDF
    Wearable technologies represent the new frontier of vital signs monitoring in different applications, from fitness to health. With the progressive miniaturization of the electronic components, enabling the implementation of portable and hand-held acquisition and recording devices, the research focus has shifted toward the development of effective and unobtrusive textile electrodes. This work deals with the study, development and characterization of organic-polymer-based electrodes for biopotentials. After an overview of the main materials and fabrication technologies presented so far in the scientific literature, the possibility to use these electrodes as an alternative to the Ag/AgCl disposable gelled electrodes usually adopted in clinical practice was tested. For this purpose, several textile electrode realization techniques were studied and optimized, in order to create electrodes with adequate features to detect two fundamental physiological signals: the electrocardiogram (ECG) and the electromyogram (EMG). The electrodes were obtained by depositing on the fabric the organic bio-compatible polymer poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) (PEDOT:PSS) with three deposition procedures: dipcoating, ink-jet printing and screen printing. The physical\u2013chemical properties of the polymer solution were varied for each procedure to obtain an optimal and reproducible result. For what concerns the ECG signal, the research activity focused on screen-printed textile electrodes and their performance was first assessed by benchtop measurements and then by human trials. The first tests demonstrated that, by adding solid or liquid electrolytes the electrodes, the largest part of the characteristics required by the ANSI/AAMI EC12:2000 standard for gelled ECG electrodes can be achieved. Tests performed in different conditions showed that the skin contact impedance and the ECG morphological features are highly similar to those obtainable with disposable gelled Ag/AgCl electrodes (\u3c1 > 0.99). A trial with ten subjects revealed also the capability of the proposed electrodes to accurately capture with clinical instruments an ECG morphology with performance comparable to off-the-shelf disposable electrodes. Furthermore, the proposed textile electrodes preserve their electrical properties and functionality even after several mild washing cycles, while they suffered physical stretching. Similar tests were performed on screen-printed textile electrodes fabricated in two different sizes to test them as EMG sensors, with and without electrolytes. After a series of controlled acquisitions performed by electro-stimulating the muscles in order to analyze the waveform morphologu of the M-wave, the statistical analysis showed a high similarity in terms of rms of the noise and electrode-skin impedance between conventional and textile electrodes with the addition of solid hydrogel and saline solution. Furthermore, the M-wave recorded on the tibialis anterior muscle during the stimulation of the peroneal nerve was comparatively analyzed between conventional and textile electrodes. The comparison provided an R2 value higher than 97% in all measurement conditions. These results opened their use in smart garments for real application scenarios and for this purpose were developed a couple of smart shirts able to detect the EGC and the EMG signal. The results indicated that this approach could be adopted in the future for the development of smart garments able to comfortably detect physiological signals

    An investigation of textile sensors and their application in wearable electronics

    Get PDF
    Using a garment as a wearable sensing device has become a reality. New methods and techniques in the field of wearable sensors are being developed and can now be incorporated into the wearer’s everyday attire. This research focuses on two types of textile based sensors – a wearable textile electrode used for ECG continuous monitoring, and a stitch sensor for monitoring body movement. These sensors were designed into a purposely engineered Smart Sports Bra (SSB) which can be regarded as a sensor itself. After a thorough investigation, two optimum textile electrodes were created; a plain electrode using cut and sew method (CSM) and a net type knitted electrode using knitting method (KM). The CSM electrode was made with conductive fabric (MedTexTM P-130) and the KM electrode was made with conductive thread (silver-plated nylon 234/34 four-ply), these materials having the lowest tested contact impedance; 450Ω and 500Ω, respectively. Both electrodes demonstrated a level of noise and baseline drift comparable with standard commercial wet-gel electrodes, which was corrected by optimising their size to 20x40 mm, holding pressure of 4 kPa (30 mmHg) and the electrode position at the 6th intercostal space on the right and left mid-clavicular, with one placed at the scapular line in the rear side (i.e. back horizontal formation) which gives clear and reliable ECG signal. These optimum electrodes were integrated directly into SSBs, in which a novel high shear, net structure, acting as a shock absorber to body movement that shows more stable electrode to skin contact by reducing the body motion artefact. During the investigation of the stitch stretch sensor the single jersey nylon fabric (4.44 tex two-ply) with 25% spandex (7.78 tex) had the highest elastic recovery (93%). Using this fabric, the work went on to show that the stitch type 304 (Zig-zag lock stitch) using the 117/17 two-ply thread demonstrated the best results i.e., maximum working range 50%, gauge factor 1.61, hysteresis 6.25% ΔR, linearity (R2 ) is 0.98, and good repeatability (drift in R2 is -0.00). The stitch stretch sensor was also incorporated into a sports bra SSB and positioned across the chest for respiration monitoring. This thesis contributes to a growing body of research in wearable E -textile solutions to support health and well-being, with fully functional sensors and easy-to-use design, for continues health monitoring
    corecore