271 research outputs found

    Graph Sparsification by Edge-Connectivity and Random Spanning Trees

    Full text link
    We present new approaches to constructing graph sparsifiers --- weighted subgraphs for which every cut has the same value as the original graph, up to a factor of (1±ϵ)(1 \pm \epsilon). Our first approach independently samples each edge uvuv with probability inversely proportional to the edge-connectivity between uu and vv. The fact that this approach produces a sparsifier resolves a question posed by Bencz\'ur and Karger (2002). Concurrent work of Hariharan and Panigrahi also resolves this question. Our second approach constructs a sparsifier by forming the union of several uniformly random spanning trees. Both of our approaches produce sparsifiers with O(nlog2(n)/ϵ2)O(n \log^2(n)/\epsilon^2) edges. Our proofs are based on extensions of Karger's contraction algorithm, which may be of independent interest

    On Split-Coloring Problems

    Get PDF
    We study a new coloring concept which generalizes the classical vertex coloring problem in a graph by extending the notion of stable sets to split graphs. First of all, we propose the packing problem of finding the split graph of maximum size where a split graph is a graph G = (V,E) in which the vertex set V can be partitioned into a clique K and a stable set S. No condition is imposed on the edges linking vertices in S to the vertices in K. This maximum split graph problem gives rise to an associated partitioning problem that we call the split-coloring problem. Given a graph, the objective is to cover all his vertices by a least number of split graphs. Definitions related to this new problem are introduced. We mention some polynomially solvable cases and describe open questions on this are

    A Quasi-Polynomial Time Partition Oracle for Graphs with an Excluded Minor

    Full text link
    Motivated by the problem of testing planarity and related properties, we study the problem of designing efficient {\em partition oracles}. A {\em partition oracle} is a procedure that, given access to the incidence lists representation of a bounded-degree graph G=(V,E)G= (V,E) and a parameter \eps, when queried on a vertex vVv\in V, returns the part (subset of vertices) which vv belongs to in a partition of all graph vertices. The partition should be such that all parts are small, each part is connected, and if the graph has certain properties, the total number of edges between parts is at most \eps |V|. In this work we give a partition oracle for graphs with excluded minors whose query complexity is quasi-polynomial in 1/\eps, thus improving on the result of Hassidim et al. ({\em Proceedings of FOCS 2009}) who gave a partition oracle with query complexity exponential in 1/\eps. This improvement implies corresponding improvements in the complexity of testing planarity and other properties that are characterized by excluded minors as well as sublinear-time approximation algorithms that work under the promise that the graph has an excluded minor.Comment: 13 pages, 1 figur

    The minimum spanning tree problem with conflict constraints and its variations

    Get PDF
    AbstractWe consider the minimum spanning tree problem with conflict constraints (MSTC). The problem is known to be strongly NP-hard and computing even a feasible solution is NP-hard. When the underlying graph is a cactus, we show that the feasibility problem is polynomially bounded whereas the optimization version is still NP-hard. When the conflict graph is a collection of disjoint cliques, (equivalently, when the conflict relation is transitive) we observe that MSTC can be solved in polynomial time. We also identify other special cases of MSTC that can be solved in polynomial time. Exploiting these polynomially solvable special cases we derive strong lower bounds. Also, various heuristic algorithms and feasibility tests are discussed along with preliminary experimental results. As a byproduct of this investigation, we show that if an ϵ-optimal solution to the maximum clique problem can be obtained in polynomial time, then a (3ϵ−1)-optimal solution to the maximum edge clique partitioning (Max-ECP) problem can be obtained in polynomial time. As a consequence, we have a polynomial time approximation algorithm for the Max-ECP with performance ratio O(n(loglogn)2log3n), improving the best previously known bound of O(n)

    Finding All Global Minimum Cuts in Practice

    Get PDF
    We present a practically efficient algorithm that finds all global minimum cuts in huge undirected graphs. Our algorithm uses a multitude of kernelization rules to reduce the graph to a small equivalent instance and then finds all minimum cuts using an optimized version of the algorithm of Nagamochi, Nakao and Ibaraki. In shared memory we are able to find all minimum cuts of graphs with up to billions of edges and millions of minimum cuts in a few minutes. We also give a new linear time algorithm to find the most balanced minimum cuts given as input the representation of all minimum cuts

    Minmax subtree cover problem on cacti

    Get PDF
    AbstractLet G=(V,E) be a connected graph such that edges and vertices are weighted by nonnegative reals. Let p be a positive integer. The minmax subtree cover problem (MSC) asks to find a pair (X,T) of a partition X={X1,X2,…,Xp} of V and a set T of p subtrees T1,T2,…,Tp, each Ti containing Xi so as to minimize the maximum cost of the subtrees, where the cost of Ti is defined to be the sum of the weights of edges in Ti and the weights of vertices in Xi. In this paper, we propose an O(p2n) time (4-4/(p+1))-approximation algorithm for the MSC when G is a cactus

    Using Graph Partitioning to Accelerate Longest Path Search

    Get PDF
    corecore