168 research outputs found

    Computing Puiseux series : a fast divide and conquer algorithm

    Get PDF
    Let FK[X,Y]F\in \mathbb{K}[X, Y ] be a polynomial of total degree DD defined over a perfect field K\mathbb{K} of characteristic zero or greater than DD. Assuming FF separable with respect to YY , we provide an algorithm that computes the singular parts of all Puiseux series of FF above X=0X = 0 in less than O~(Dδ)\tilde{\mathcal{O}}(D\delta) operations in K\mathbb{K}, where δ\delta is the valuation of the resultant of FF and its partial derivative with respect to YY. To this aim, we use a divide and conquer strategy and replace univariate factorization by dynamic evaluation. As a first main corollary, we compute the irreducible factors of FF in K[[X]][Y]\mathbb{K}[[X]][Y ] up to an arbitrary precision XNX^N with O~(D(δ+N))\tilde{\mathcal{O}}(D(\delta + N )) arithmetic operations. As a second main corollary, we compute the genus of the plane curve defined by FF with O~(D3)\tilde{\mathcal{O}}(D^3) arithmetic operations and, if K=Q\mathbb{K} = \mathbb{Q}, with O~((h+1)D3)\tilde{\mathcal{O}}((h+1)D^3) bit operations using a probabilistic algorithm, where hh is the logarithmic heigth of FF.Comment: 27 pages, 2 figure

    Using approximate roots for irreducibility and equi-singularity issues in K[[x]][y]

    Full text link
    We provide an irreducibility test in the ring K[[x]][y] whose complexity is quasi-linear with respect to the valuation of the discriminant, assuming the input polynomial F square-free and K a perfect field of characteristic zero or greater than deg(F). The algorithm uses the theory of approximate roots and may be seen as a generalization of Abhyankhar's irreducibility criterion to the case of non algebraically closed residue fields. More generally, we show that we can test within the same complexity if a polynomial is pseudo-irreducible, a larger class of polynomials containing irreducible ones. If FF is pseudo-irreducible, the algorithm computes also the valuation of the discriminant and the equisingularity types of the germs of plane curve defined by F along the fiber x=0.Comment: 51 pages. Title modified. Slight modifications in Definition 5 and Proposition 1

    Computing all integer solutions of a genus 1 equation

    Get PDF
    The Elliptic Logarithm Method has been applied with great successto the problem of computing all integer solutions of equations ofdegree 3 and 4 defining elliptic curves. We extend this methodto include any equation f(u,v)=0 that defines a curve of genus 1.Here f is a polynomial with integer coefficients and irreducible overthe algebraic closure of the rationals, but is otherwise of arbitrary shape and degree.We give a detailed description of the general features of our approach,and conclude with two rather unusual examples corresponding to equationsof degree 5 and degree 9.Elliptic curve;Elliptic logarithm;Dophantine equation

    Computing low-degree factors of lacunary polynomials: a Newton-Puiseux approach

    Full text link
    We present a new algorithm for the computation of the irreducible factors of degree at most dd, with multiplicity, of multivariate lacunary polynomials over fields of characteristic zero. The algorithm reduces this computation to the computation of irreducible factors of degree at most dd of univariate lacunary polynomials and to the factorization of low-degree multivariate polynomials. The reduction runs in time polynomial in the size of the input polynomial and in dd. As a result, we obtain a new polynomial-time algorithm for the computation of low-degree factors, with multiplicity, of multivariate lacunary polynomials over number fields, but our method also gives partial results for other fields, such as the fields of pp-adic numbers or for absolute or approximate factorization for instance. The core of our reduction uses the Newton polygon of the input polynomial, and its validity is based on the Newton-Puiseux expansion of roots of bivariate polynomials. In particular, we bound the valuation of f(X,ϕ)f(X,\phi) where ff is a lacunary polynomial and ϕ\phi a Puiseux series whose vanishing polynomial has low degree.Comment: 22 page
    corecore