3,613 research outputs found

    Information Recovery from Pairwise Measurements

    Full text link
    A variety of information processing tasks in practice involve recovering nn objects from single-shot graph-based measurements, particularly those taken over the edges of some measurement graph G\mathcal{G}. This paper concerns the situation where each object takes value over a group of MM different values, and where one is interested to recover all these values based on observations of certain pairwise relations over G\mathcal{G}. The imperfection of measurements presents two major challenges for information recovery: 1) inaccuracy\textit{inaccuracy}: a (dominant) portion 1p1-p of measurements are corrupted; 2) incompleteness\textit{incompleteness}: a significant fraction of pairs are unobservable, i.e. G\mathcal{G} can be highly sparse. Under a natural random outlier model, we characterize the minimax recovery rate\textit{minimax recovery rate}, that is, the critical threshold of non-corruption rate pp below which exact information recovery is infeasible. This accommodates a very general class of pairwise relations. For various homogeneous random graph models (e.g. Erdos Renyi random graphs, random geometric graphs, small world graphs), the minimax recovery rate depends almost exclusively on the edge sparsity of the measurement graph G\mathcal{G} irrespective of other graphical metrics. This fundamental limit decays with the group size MM at a square root rate before entering a connectivity-limited regime. Under the Erdos Renyi random graph, a tractable combinatorial algorithm is proposed to approach the limit for large MM (M=nΩ(1)M=n^{\Omega(1)}), while order-optimal recovery is enabled by semidefinite programs in the small MM regime. The extended (and most updated) version of this work can be found at (http://arxiv.org/abs/1504.01369).Comment: This version is no longer updated -- please find the latest version at (arXiv:1504.01369

    An ICP variant using a point-to-line metric

    Get PDF
    This paper describes PLICP, an ICP (iterative closest/corresponding point) variant that uses a point-to-line metric, and an exact closed-form for minimizing such metric. The resulting algorithm has some interesting properties: it converges quadratically, and in a finite number of steps. The method is validated against vanilla ICP, IDC (iterative dual correspondences), and MBICP (Metric-Based ICP) by reproducing the experiments performed in Minguez et al. (2006). The experiments suggest that PLICP is more precise, and requires less iterations. However, it is less robust to very large initial displacement errors. The last part of the paper is devoted to purely algorithmic optimization of the correspondence search; this allows for a significant speed-up of the computation. The source code is available for download

    A Novel Method for the Absolute Pose Problem with Pairwise Constraints

    Full text link
    Absolute pose estimation is a fundamental problem in computer vision, and it is a typical parameter estimation problem, meaning that efforts to solve it will always suffer from outlier-contaminated data. Conventionally, for a fixed dimensionality d and the number of measurements N, a robust estimation problem cannot be solved faster than O(N^d). Furthermore, it is almost impossible to remove d from the exponent of the runtime of a globally optimal algorithm. However, absolute pose estimation is a geometric parameter estimation problem, and thus has special constraints. In this paper, we consider pairwise constraints and propose a globally optimal algorithm for solving the absolute pose estimation problem. The proposed algorithm has a linear complexity in the number of correspondences at a given outlier ratio. Concretely, we first decouple the rotation and the translation subproblems by utilizing the pairwise constraints, and then we solve the rotation subproblem using the branch-and-bound algorithm. Lastly, we estimate the translation based on the known rotation by using another branch-and-bound algorithm. The advantages of our method are demonstrated via thorough testing on both synthetic and real-world dataComment: 10 pages, 7figure
    corecore