12,446 research outputs found

    Detecting 2-joins faster

    Get PDF
    2-joins are edge cutsets that naturally appear in the decomposition of several classes of graphs closed under taking induced subgraphs, such as balanced bipartite graphs, even-hole-free graphs, perfect graphs and claw-free graphs. Their detection is needed in several algorithms, and is the slowest step for some of them. The classical method to detect a 2-join takes O(n3m)O(n^3m) time where nn is the number of vertices of the input graph and mm the number of its edges. To detect \emph{non-path} 2-joins (special kinds of 2-joins that are needed in all of the known algorithms that use 2-joins), the fastest known method takes time O(n4m)O(n^4m). Here, we give an O(n2m)O(n^2m)-time algorithm for both of these problems. A consequence is a speed up of several known algorithms

    The world of hereditary graph classes viewed through Truemper configurations

    Get PDF
    In 1982 Truemper gave a theorem that characterizes graphs whose edges can be labeled so that all chordless cycles have prescribed parities. The characterization states that this can be done for a graph G if and only if it can be done for all induced subgraphs of G that are of few speci c types, that we will call Truemper con gurations. Truemper was originally motivated by the problem of obtaining a co-NP characterization of bipartite graphs that are signable to be balanced (i.e. bipartite graphs whose node-node incidence matrices are balanceable matrices). The con gurations that Truemper identi ed in his theorem ended up playing a key role in understanding the structure of several seemingly diverse classes of objects, such as regular matroids, balanceable matrices and perfect graphs. In this survey we view all these classes, and more, through the excluded Truemper con gurations, focusing on the algorithmic consequences, trying to understand what structurally enables e cient recognition and optimization algorithms
    corecore