7,911 research outputs found

    A polynomial lower bound for testing monotonicity

    Get PDF
    We show that every algorithm for testing n-variate Boolean functions for monotonicity has query complexity Ω(n1/4). All previous lower bounds for this problem were designed for nonadaptive algorithms and, as a result, the best previous lower bound for general (possibly adaptive) monotonicity testers was only Ω(logn). Combined with the query complexity of the non-adaptive monotonicity tester of Khot, Minzer, and Safra (FOCS 2015), our lower bound shows that adaptivity can result in at most a quadratic reduction in the query complexity for testing monotonicity. By contrast, we show that there is an exponential gap between the query complexity of adaptive and non-adaptive algorithms for testing regular linear threshold functions (LTFs) for monotonicity. Chen, De, Servedio, and Tan (STOC 2015) recently showed that non-adaptive algorithms require almost Ω(n1/2) queries for this task. We introduce a new adaptive monotonicity testing algorithm which has query complexity O(logn) when the input is a regular LTF

    Mildly Exponential Lower Bounds on Tolerant Testers for Monotonicity, Unateness, and Juntas

    Full text link
    We give the first super-polynomial (in fact, mildly exponential) lower bounds for tolerant testing (equivalently, distance estimation) of monotonicity, unateness, and juntas with a constant separation between the "yes" and "no" cases. Specifically, we give ∙\bullet A 2Ω(n1/4/ε)2^{\Omega(n^{1/4}/\sqrt{\varepsilon})}-query lower bound for non-adaptive, two-sided tolerant monotonicity testers and unateness testers when the "gap" parameter ε2−ε1\varepsilon_2-\varepsilon_1 is equal to ε\varepsilon, for any ε≥1/n\varepsilon \geq 1/\sqrt{n}; ∙\bullet A 2Ω(k1/2)2^{\Omega(k^{1/2})}-query lower bound for non-adaptive, two-sided tolerant junta testers when the gap parameter is an absolute constant. In the constant-gap regime no non-trivial prior lower bound was known for monotonicity, the best prior lower bound known for unateness was Ω~(n3/2)\tilde{\Omega}(n^{3/2}) queries, and the best prior lower bound known for juntas was poly(k)\mathrm{poly}(k) queries.Comment: 20 pages, 1 figur

    Isoperimetric Inequalities for Real-Valued Functions with Applications to Monotonicity Testing

    Get PDF
    We generalize the celebrated isoperimetric inequality of Khot, Minzer, and Safra (SICOMP 2018) for Boolean functions to the case of real-valued functions f:{0,1}^d ? ?. Our main tool in the proof of the generalized inequality is a new Boolean decomposition that represents every real-valued function f over an arbitrary partially ordered domain as a collection of Boolean functions over the same domain, roughly capturing the distance of f to monotonicity and the structure of violations of f to monotonicity. We apply our generalized isoperimetric inequality to improve algorithms for testing monotonicity and approximating the distance to monotonicity for real-valued functions. Our tester for monotonicity has query complexity O?(min(r ?d,d)), where r is the size of the image of the input function. (The best previously known tester makes O(d) queries, as shown by Chakrabarty and Seshadhri (STOC 2013).) Our tester is nonadaptive and has 1-sided error. We prove a matching lower bound for nonadaptive, 1-sided error testers for monotonicity. We also show that the distance to monotonicity of real-valued functions that are ?-far from monotone can be approximated nonadaptively within a factor of O(?{d log d}) with query complexity polynomial in 1/? and the dimension d. This query complexity is known to be nearly optimal for nonadaptive algorithms even for the special case of Boolean functions. (The best previously known distance approximation algorithm for real-valued functions, by Fattal and Ron (TALG 2010) achieves O(d log r)-approximation.

    Boolean function monotonicity testing requires (almost) n1/2n^{1/2} non-adaptive queries

    Full text link
    We prove a lower bound of Ω(n1/2−c)\Omega(n^{1/2 - c}), for all c>0c>0, on the query complexity of (two-sided error) non-adaptive algorithms for testing whether an nn-variable Boolean function is monotone versus constant-far from monotone. This improves a Ω~(n1/5)\tilde{\Omega}(n^{1/5}) lower bound for the same problem that was recently given in [CST14] and is very close to Ω(n1/2)\Omega(n^{1/2}), which we conjecture is the optimal lower bound for this model
    • …
    corecore