58 research outputs found

    Optically Powered Highly Energy-efficient Sensor Networks

    Get PDF
    In optically powered networks, both, communication signals and power for remotely located sensor nodes, are transmitted over an optical fiber. Key features of optically powered networks are node operation without local power supplies or batteries as well as operation with negligible susceptibility to electro-magnetic interference and to lightning. In this book, different kinds of optically powered devices and networks are investigated, and selected applications are demonstrated

    Adaptive MAC Protocol Design for Energy Efficient and Reliable WBAN Link

    Get PDF
    The present need for a well-organised and continuous health care service at an affordable price gives rise to a wireless health monitoring technology. Wireless body area network is an emerging field of a wireless sensor network that works in the vicinity of the human body. This technology has its most significant application in the modern healthcare system. This wban architecture is designed to get the health information and daily routine of human activity (both physical and psychological) through energy efficient and reliable radio transceivers connectivity these modern devices behave according to some predesigned rules called communication protocols. The mac protocols are designed specially according to wban standards and requirements. The physiological sensors installed in wban system consume a large amount of energy for communication that leads to frequent data interruption and also a change of implanted devices. As this is troublesome for both patient and server, protocols are continuously upgraded to make the communication highly energy efficient and reliable. The prime aim of this work is to reduce the energy consumption and increase the lifespan of the network. This work proposes an energy harvesting adaptive mac protocol applied for node connectivity and detailed simulation study carried out with the proposed protocol proves to be having minimum power consumption, increased network lifetime, and high throughput compared to the existing mac protocols in wban framework. We have used hybrid mesh topology where all nodes have both uplink and downlink. Here we are utilizing a gts based multi-hop technique and adaptive wake-up mechanism for the sleep mode of the transceiver to minimize the wake-up periods

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Algorithms for Energy Efficiency in Wireless Sensor Networks

    Get PDF
    The recent advances in microsensor and semiconductor technology have opened a new field within computer science: the networking of small-sized sensors which are capable of sensing, processing, and communicating. Such wireless sensor networks offer new applications in the areas of habitat and environment monitoring, disaster control and operation, military and intelligence control, object tracking, video surveillance, traffic control, as well as in health care and home automation. It is likely that the deployed sensors will be battery-powered, which will limit the energy capacity significantly. Thus, energy efficiency becomes one of the main challenges that need to be taken into account, and the design of energy-efficient algorithms is a major contribution of this thesis. As the wireless communication in the network is one of the main energy consumers, we first consider in detail the characteristics of wireless communication. By using the embedded sensor board (ESB) platform recently developed by the Free University of Berlin, we analyze the means of forward error correction and propose an appropriate resync mechanism, which improves the communication between two ESB nodes substantially. Afterwards, we focus on the forwarding of data packets through the network. We present the algorithms energy-efficient forwarding (EEF), lifetime-efficient forwarding (LEF), and energy-efficient aggregation forwarding (EEAF). While EEF is designed to maximize the number of data bytes delivered per energy unit, LEF additionally takes into account the residual energy of forwarding nodes. In so doing, LEF further prolongs the lifetime of the network. Energy savings due to data aggregation and in-network processing are exploited by EEAF. Besides single-link forwarding, in which data packets are sent to only one forwarding node, we also study the impact of multi-link forwarding, which exploits the broadcast characteristics of the wireless medium by sending packets to several (potential) forwarding nodes. By actively selecting a forwarder among all nodes that received a packet successfully, retransmissions can often be avoided. In the majority of cases, multi-link forwarding is thus more efficient and able to save energy. In the last part of this thesis, we present a topology and energy control algorithm (TECA) to turn off the nodes' radio transceivers completely in order to avoid idle listening. By means of TECA, a connected backbone of active nodes is established, while all other nodes may sleep and save energy by turning off their radios. All algorithms presented in this thesis have been fully analyzed, simulated, and implemented on the ESB platform. They are suitable for several applications scenarios and can easily be adapted even to other wireless sensor platforms

    Design of a wireless platform for wearable and home automation applications

    Get PDF
    Title from PDF of title page, viewed on October 2, 2012Thesis advisor: Walter D. León-SalasVitaIncludes bibliographic references (p. 147-[151])Thesis (M.S.)--School of Computing and Engineering. University of Missouri--Kansas City, 2012In the recent past, a great deal of attention has been given to wireless sensors. Wireless sensors enable a multitude of applications such as environmental monitoring, medical care, disaster response, home automation, urban scale monitoring, gaming etc. These small, low-power, multifunctional sensors includes sensing, data processing and communication components representing a significant improvement over the traditional sensors. The two attractive wireless sensor applications investigated in this thesis are wearable sensors for bio-medical applications and a ZigBee wireless network for home automation applications. The targeted bio-medical application is bone strain monitoring. The current setup to collect strain data is composed of a data acquisition unit connected to a bench top load instrument. For accurate measurements the lab animals have to be sedated and immobilized in the current setup which is also bulky. A telemetry unit equipped with strain gages designed for implantable measurement of bone strain was designed to address this problem. The measurements collected by an implantable telemetry unit are of high interest to orthopedic researchers who wish to know the load acting on an orthopedic implant and hence to help guide the rehabilitation outcomes in a patient. This thesis describes two small telemetry units with multiple configurable sensor channels which can be used to sense resistance and voltage. Thus, the designed units can be used in home energy monitoring applications as well. The units have low power consumption and were designed using off-the-shelf components. Their dimensions are 24 mm x 13 mm and 10 mm x 10 mm. The sensor signals are multiplexed, modulated and transmitted to a remote computer by means of a radio transceiver. Besides measuring strain integrated levels the telemetry units can also measure acceleration in 3 axes. Wireless battery charging is another feature that was included in our design which is a key feature for surgically implanted devices. To show that our telemetry units has comparable accuracy and compactness to the current setup, we present the readings from both setups. A ZigBee wireless sensor network to monitor and control home appliances was designed and successfully tested. A central control unit is the coordinator which sets up the network and configures the ZigBee network parameters. The battery powered sensors are configured as end-devices which periodically report sensor data such as light, temperature, accelerometer and energy consumption values to the coordinator. Any home appliance limited to less than 10 Amps in the ZigBee network can be turned on or off from the central control unit. With bidirectional communication achieved between the central control unit and the end-device, we were able to achieve a home automation system.Introduction -- Background -- Telemetry unit architecture -- Data collection and results -- Conclusion and future work -- Appendix A.1. Four layer PCB layout of the eight channel telemetry unit -- Appendix A.2. Four layer PCB layout of the four channel telemetry uni

    Transiently Powered Computers

    Get PDF
    Demand for compact, easily deployable, energy-efficient computers has driven the development of general-purpose transiently powered computers (TPCs) that lack both batteries and wired power, operating exclusively on energy harvested from their surroundings. TPCs\u27 dependence solely on transient, harvested power offers several important design-time benefits. For example, omitting batteries saves board space and weight while obviating the need to make devices physically accessible for maintenance. However, transient power may provide an unpredictable supply of energy that makes operation difficult. A predictable energy supply is a key abstraction underlying most electronic designs. TPCs discard this abstraction in favor of opportunistic computation that takes advantage of available resources. A crucial question is how should a software-controlled computing device operate if it depends completely on external entities for power and other resources? The question poses challenges for computation, communication, storage, and other aspects of TPC design. The main idea of this work is that software techniques can make energy harvesting a practicable form of power supply for electronic devices. Its overarching goal is to facilitate the design and operation of usable TPCs. This thesis poses a set of challenges that are fundamental to TPCs, then pairs these challenges with approaches that use software techniques to address them. To address the challenge of computing steadily on harvested power, it describes Mementos, an energy-aware state-checkpointing system for TPCs. To address the dependence of opportunistic RF-harvesting TPCs on potentially untrustworthy RFID readers, it describes CCCP, a protocol and system for safely outsourcing data storage to RFID readers that may attempt to tamper with data. Additionally, it describes a simulator that facilitates experimentation with the TPC model, and a prototype computational RFID that implements the TPC model. To show that TPCs can improve existing electronic devices, this thesis describes applications of TPCs to implantable medical devices (IMDs), a challenging design space in which some battery-constrained devices completely lack protection against radio-based attacks. TPCs can provide security and privacy benefits to IMDs by, for instance, cryptographically authenticating other devices that want to communicate with the IMD before allowing the IMD to use any of its battery power. This thesis describes a simplified IMD that lacks its own radio, saving precious battery energy and therefore size. The simplified IMD instead depends on an RFID-scale TPC for all of its communication functions. TPCs are a natural area of exploration for future electronic design, given the parallel trends of energy harvesting and miniaturization. This work aims to establish and evaluate basic principles by which TPCs can operate
    corecore