8,898 research outputs found

    Exploring the Use of Wearables to Enable Indoor Navigation for Blind Users

    Get PDF
    One of the challenges that people with visual impairments (VI) have to have to confront daily, is navigating independently through foreign or unfamiliar spaces.Navigating through unfamiliar spaces without assistance is very time consuming and leads to lower mobility. Especially in the case of indoor environments where the use of GPS is impossible, this task becomes even harder.However, advancements in mobile and wearable computing pave the path to new cheap assistive technologies that can make the lives of people with VI easier.Wearable devices have great potential for assistive applications for users who are blind as they typically feature a camera and support hands and eye free interaction. Smart watches and heads up displays (HUDs), in combination with smartphones, can provide a basis for development of advanced algorithms, capable of providing inexpensive solutions for navigation in indoor spaces. New interfaces are also introduced making the interaction between users who are blind and mo-bile devices more intuitive.This work presents a set of new systems and technologies created to help users with VI navigate indoor environments. The first system presented is an indoor navigation system for people with VI that operates by using sensors found in mo-bile devices and virtual maps of the environment. The second system presented helps users navigate large open spaces with minimum veering. Next a study is conducted to determine the accuracy of pedometry based on different body placements of the accelerometer sensors. Finally, a gesture detection system is introduced that helps communication between the user and mobile devices by using sensors in wearable devices

    Indoor positioning system using BLE beacon to improve knowledge about museum visitors

    Get PDF
    Generally, a museum has many locations and artifacts collection that display for visitors. Museum manager often have difficulty in obtaining information on visitors behavior such as, is there are particular locations/artifacts in the museum that are frequently/rarely visit by museum visitors, how long visitors spend their time in particular locations/artifacts, etc. The purpose of this study is try to build a suitable system in order to improve knowledge about the behavior of museum visitors by identifying the position of visitors in the museum. This study uses Bluetooth Low Energy (BLE) Beacon that place around the museum. The visitor mobile phone will detect BLE beacon signal, then the mobile phone application will calculated the visitor’s mobile phone position using the signal strength from the BLE beacons that are detected. The application then sends it to the computer server to display it in as museum visitor heat map. From this information, the museum manager could find out the visitors behavior movement and know which areas/artifacts that frequently/rarely visit by museum visitors. According to distance error testing which compare real location and position of the calculation, it is show that the average of distance error is around 140 cm. So, it can be concluded that the information obtained is sufficient enough to represent the position of museum visitors

    Map matching by using inertial sensors: literature review

    Get PDF
    This literature review aims to clarify what is known about map matching by using inertial sensors and what are the requirements for map matching, inertial sensors, placement and possible complementary position technology. The target is to develop a wearable location system that can position itself within a complex construction environment automatically with the aid of an accurate building model. The wearable location system should work on a tablet computer which is running an augmented reality (AR) solution and is capable of track and visualize 3D-CAD models in real environment. The wearable location system is needed to support the system in initialization of the accurate camera pose calculation and automatically finding the right location in the 3D-CAD model. One type of sensor which does seem applicable to people tracking is inertial measurement unit (IMU). The IMU sensors in aerospace applications, based on laser based gyroscopes, are big but provide a very accurate position estimation with a limited drift. Small and light units such as those based on Micro-Electro-Mechanical (MEMS) sensors are becoming very popular, but they have a significant bias and therefore suffer from large drifts and require method for calibration like map matching. The system requires very little fixed infrastructure, the monetary cost is proportional to the number of users, rather than to the coverage area as is the case for traditional absolute indoor location systems.Siirretty Doriast

    Sub-Nanosecond Time of Flight on Commercial Wi-Fi Cards

    Full text link
    Time-of-flight, i.e., the time incurred by a signal to travel from transmitter to receiver, is perhaps the most intuitive way to measure distances using wireless signals. It is used in major positioning systems such as GPS, RADAR, and SONAR. However, attempts at using time-of-flight for indoor localization have failed to deliver acceptable accuracy due to fundamental limitations in measuring time on Wi-Fi and other RF consumer technologies. While the research community has developed alternatives for RF-based indoor localization that do not require time-of-flight, those approaches have their own limitations that hamper their use in practice. In particular, many existing approaches need receivers with large antenna arrays while commercial Wi-Fi nodes have two or three antennas. Other systems require fingerprinting the environment to create signal maps. More fundamentally, none of these methods support indoor positioning between a pair of Wi-Fi devices without~third~party~support. In this paper, we present a set of algorithms that measure the time-of-flight to sub-nanosecond accuracy on commercial Wi-Fi cards. We implement these algorithms and demonstrate a system that achieves accurate device-to-device localization, i.e. enables a pair of Wi-Fi devices to locate each other without any support from the infrastructure, not even the location of the access points.Comment: 14 page
    corecore