4,691 research outputs found

    A radiation-hard dual-channel 12-bit 40 MS/s ADC prototype for the ATLAS liquid argon calorimeter readout electronics upgrade at the CERN LHC

    Full text link
    The readout electronics upgrade for the ATLAS Liquid Argon Calorimeters at the CERN Large Hadron Collider requires a radiation-hard ADC. The design of a radiation-hard dual-channel 12-bit 40 MS/s pipeline ADC for this use is presented. The design consists of two pipeline A/D channels each with four Multiplying Digital-to-Analog Converters followed by 8-bit Successive-Approximation-Register analog-to-digital converters. The custom design, fabricated in a commercial 130 nm CMOS process, shows a performance of 67.9 dB SNDR at 10 MHz for a single channel at 40 MS/s, with a latency of 87.5 ns (to first bit read out), while its total power consumption is 50 mW/channel. The chip uses two power supply voltages: 1.2 and 2.5 V. The sensitivity to single event effects during irradiation is measured and determined to meet the system requirements

    Revamping Timing Error Resilience to Tackle Choke Points at NTC

    Get PDF
    The growing market of portable devices and smart wearables has contributed to innovation and development of systems with longer battery-life. While Near Threshold Computing (NTC) systems address the need for longer battery-life, they have certain limitations. NTC systems are prone to be significantly affected by variations in the fabrication process, commonly called process variation (PV). This dissertation explores an intriguing effect of PV, called choke points. Choke points are especially important due to their multifarious influence on the functional correctness of an NTC system. This work shows why novel research is required in this direction and proposes two techniques to resolve the problems created by choke points, while maintaining the reduced power needs

    Revamping Timing Error Resilience to Tackle Choke Points at NTC

    Get PDF
    The growing market of portable devices and smart wearables has contributed to innovation and development of systems with longer battery-life. While Near Threshold Computing (NTC) systems address the need for longer battery-life, they have certain limitations. NTC systems are prone to be significantly affected by variations in the fabrication process, commonly called process variation (PV). This dissertation explores an intriguing effect of PV, called choke points. Choke points are especially important due to their multifarious influence on the functional correctness of an NTC system. This work shows why novel research is required in this direction and proposes two techniques to resolve the problems created by choke points, while maintaining the reduced power needs

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve

    Modeling and Energy Optimization of LDPC Decoder Circuits with Timing Violations

    Full text link
    This paper proposes a "quasi-synchronous" design approach for signal processing circuits, in which timing violations are permitted, but without the need for a hardware compensation mechanism. The case of a low-density parity-check (LDPC) decoder is studied, and a method for accurately modeling the effect of timing violations at a high level of abstraction is presented. The error-correction performance of code ensembles is then evaluated using density evolution while taking into account the effect of timing faults. Following this, several quasi-synchronous LDPC decoder circuits based on the offset min-sum algorithm are optimized, providing a 23%-40% reduction in energy consumption or energy-delay product, while achieving the same performance and occupying the same area as conventional synchronous circuits.Comment: To appear in IEEE Transactions on Communication

    On the Resilience of RTL NN Accelerators: Fault Characterization and Mitigation

    Get PDF
    Machine Learning (ML) is making a strong resurgence in tune with the massive generation of unstructured data which in turn requires massive computational resources. Due to the inherently compute- and power-intensive structure of Neural Networks (NNs), hardware accelerators emerge as a promising solution. However, with technology node scaling below 10nm, hardware accelerators become more susceptible to faults, which in turn can impact the NN accuracy. In this paper, we study the resilience aspects of Register-Transfer Level (RTL) model of NN accelerators, in particular, fault characterization and mitigation. By following a High-Level Synthesis (HLS) approach, first, we characterize the vulnerability of various components of RTL NN. We observed that the severity of faults depends on both i) application-level specifications, i.e., NN data (inputs, weights, or intermediate), NN layers, and NN activation functions, and ii) architectural-level specifications, i.e., data representation model and the parallelism degree of the underlying accelerator. Second, motivated by characterization results, we present a low-overhead fault mitigation technique that can efficiently correct bit flips, by 47.3% better than state-of-the-art methods.Comment: 8 pages, 6 figure
    • …
    corecore