77 research outputs found

    Approaches for Future Internet architecture design and Quality of Experience (QoE) Control

    Get PDF
    Researching a Future Internet capable of overcoming the current Internet limitations is a strategic investment. In this respect, this paper presents some concepts that can contribute to provide some guidelines to overcome the above-mentioned limitations. In the authors' vision, a key Future Internet target is to allow applications to transparently, efficiently and flexibly exploit the available network resources with the aim to match the users' expectations. Such expectations could be expressed in terms of a properly defined Quality of Experience (QoE). In this respect, this paper provides some approaches for coping with the QoE provision problem

    Network Selection Problems - QoE vs QoS Who is the Winner?

    Get PDF
    In network selection problem (NSP), there are now two schools of thought. There are those who think using QoE (Quality of Experience) is the best yardstick to measure the suitability of a Candidate Network (CN) to handover to. On the other hand, Quality of Service (QoS) is also advocated as the solution for network selection problems. In this article, a comprehensive framework that supports effective and efficient network selection is presented. The framework   attempts to provide a holistic solution to network selection problem that is achieved by combining both of the QoS and QoE measures.   Using this hybrid solution the best qualities in both methods are combined to overcome issues of the network selection problem According to ITU-R (International Telecommunications Union – Radio Standardization Sector), a 4G network is defined as having peak data rates of 100Mb/s for mobile nodes with speed up to 250 km/hr and 1Gb/s for mobile nodes moving at pedestrian speed. Based on this definition, it is safe to say that mobile nodes that can go from pedestrian speed to speed of up to 250 km/hr will be the norm in future. This indicates that the MN’s mobility will be highly dynamic. In particular, this article addresses the issue of network selection for high speed Mobile Nodes (MN) in 4G networks. The framework presented in this article also discusses how the QoS value collected from CNs can be fine-tuned to better reflect an MN’s current mobility scenario

    Deep Learning Techniques for Mobility Prediction and Management in Mobile Networks

    Get PDF
    Trajectory prediction is an important research topic in modern mobile networks (e.g., 5G and beyond 5G) to enhance the network quality of service by accurately predicting the future locations of mobile users, such as pedestrians and vehicles, based on their past mobility patterns. A trajectory is defined as the sequence of locations the user visits over time. The primary objective of this thesis is to improve the modeling of mobility data and establish personalized, scalable, collective-intelligent, distributed, and strategic trajectory prediction techniques that can effectively adapt to the dynamics of urban environments in order to facilitate the optimal delivery of mobility-aware network services. Our proposed approaches aim to increase the accuracy of trajectory prediction while minimizing communication and computational costs leading to more efficient mobile networks. The thesis begins by introducing a personalized trajectory prediction technique using deep learning and reinforcement learning. It adapts the neural network architecture to capture the distinct characteristics of mobile users’ data. Furthermore, it introduces advanced anticipatory handover management and dynamic service migration techniques that optimize network management using our high-performance trajectory predictor. This approach ensures seamless connectivity and proactively migrates network services, enhancing the quality of service in dense wireless networks. The second contribution of the thesis introduces cluster-level prediction to extend the reinforcement learning-based trajectory prediction, addressing scalability challenges in large-scale networks. Cluster-level trajectory prediction leverages users’ similarities within clusters to train only a few representatives. This enables efficient transfer learning of pre-trained mobility models and reduces computational overhead enhancing the network scalability. The third contribution proposes a collaborative social-aware multi-agent trajectory prediction technique that accounts for the interactions between multiple intra-cluster agents in a dynamic urban environment, increasing the prediction accuracy but decreasing the algorithm complexity and computational resource usage. The fourth contribution proposes a federated learning-driven multi-agent trajectory prediction technique that leverages the collaborative power of multiple local data sources in a decentralized manner to enhance user privacy and improve the accuracy of trajectory prediction while jointly minimizing computational and communication costs. The fifth contribution proposes a game theoretic non-cooperative multi-agent prediction technique that considers the strategic behaviors among competitive inter-cluster mobile users. The proposed approaches are evaluated on small-scale and large-scale location-based mobility datasets, where locations could be GPS coordinates or cellular base station IDs. Our experiments demonstrate that our proposed approaches outperform state-of-the-art trajectory prediction methods making significant contributions to the field of mobile networks

    Fair and Scalable Orchestration of Network and Compute Resources for Virtual Edge Services

    Get PDF
    The combination of service virtualization and edge computing allows for low latency services, while keeping data storage and processing local. However, given the limited resources available at the edge, a conflict in resource usage arises when both virtualized user applications and network functions need to be supported. Further, the concurrent resource request by user applications and network functions is often entangled, since the data generated by the former has to be transferred by the latter, and vice versa. In this paper, we first show through experimental tests the correlation between a video-based application and a vRAN. Then, owing to the complex involved dynamics, we develop a scalable reinforcement learning framework for resource orchestration at the edge, which leverages a Pareto analysis for provable fair and efficient decisions. We validate our framework, named VERA, through a real-time proof-of-concept implementation, which we also use to obtain datasets reporting real-world operational conditions and performance. Using such experimental datasets, we demonstrate that VERA meets the KPI targets for over 96% of the observation period and performs similarly when executed in our real-time implementation, with KPI differences below 12.4%. Further, its scaling cost is 54% lower than a centralized framework based on deep-Q networks

    Improved quality of online education using prioritized multi-agent reinforcement learning for video traffic scheduling

    Get PDF
    The recent global pandemic has transformed the way education is delivered, increasing the importance of videobased online learning. However, this puts a significant pressure on the underlying communication networks and the limited available bandwidth needs to be intelligently allocated to support a much higher transmission load, including video-based services. In this context, this paper proposes a Machine Learning (ML)-based solution that dynamically prioritizes content viewers with heterogeneous video services to increase their Quality of Service (QoS) and perceived Quality of Experience (QoE). The proposed approach makes use of the novel Prioritized Multi- Agent Reinforcement Learning solution (PriMARL) to decide the prioritization order of the video-based services based on networking conditions. However, the performance in terms of QoS and QoE provisioning to learners with different profiles and networking conditions depends on the type of scheduler employed in the frequency domain to conduct the scheduling and the radio resource allocation. To decide the best approach to be followed, we employ the proposed PriMARL solution with different types of scheduling rules and compare them with other state-of-theart solutions in terms of throughput, delay, packet loss, Peak Signal-to-Noise Ratio (PSNR), and Mean Opinion Score (MOS) for different traffic loads and characteristics. We show that the proposed solution achieves the best user QoE results

    Immersive interconnected virtual and augmented reality : a 5G and IoT perspective

    Get PDF
    Despite remarkable advances, current augmented and virtual reality (AR/VR) applications are a largely individual and local experience. Interconnected AR/VR, where participants can virtually interact across vast distances, remains a distant dream. The great barrier that stands between current technology and such applications is the stringent end-to-end latency requirement, which should not exceed 20 ms in order to avoid motion sickness and other discomforts. Bringing AR/VR to the next level to enable immersive interconnected AR/VR will require significant advances towards 5G ultra-reliable low-latency communication (URLLC) and a Tactile Internet of Things (IoT). In this article, we articulate the technical challenges to enable a future AR/VR end-to-end architecture, that combines 5G URLLC and Tactile IoT technology to support this next generation of interconnected AR/VR applications. Through the use of IoT sensors and actuators, AR/VR applications will be aware of the environmental and user context, supporting human-centric adaptations of the application logic, and lifelike interactions with the virtual environment. We present potential use cases and the required technological building blocks. For each of them, we delve into the current state of the art and challenges that need to be addressed before the dream of remote AR/VR interaction can become reality

    Recent Advances in Machine Learning for Network Automation in the O-RAN

    Get PDF
    © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/The evolution of network technologies has witnessed a paradigm shift toward open and intelligent networks, with the Open Radio Access Network (O-RAN) architecture emerging as a promising solution. O-RAN introduces disaggregation and virtualization, enabling network operators to deploy multi-vendor and interoperable solutions. However, managing and automating the complex O-RAN ecosystem presents numerous challenges. To address this, machine learning (ML) techniques have gained considerable attention in recent years, offering promising avenues for network automation in O-RAN. This paper presents a comprehensive survey of the current research efforts on network automation using ML in O-RAN. We begin by providing an overview of the O-RAN architecture and its key components, highlighting the need for automation. Subsequently, we delve into O-RAN support for ML techniques. The survey then explores challenges in network automation using ML within the O-RAN environment, followed by the existing research studies discussing application of ML algorithms and frameworks for network automation in O-RAN. The survey further discusses the research opportunities by identifying important aspects where ML techniques can benefit.Peer reviewe
    • …
    corecore