1,650 research outputs found

    Dual-hop transmissions with fixed-gain relays over Generalized-Gamma fading channels

    Get PDF
    In this paper, a study on the end-to-end performance of dual-hop wireless communication systems equipped with fixed-gain relays and operating over Generalized-Gamma (GG) fading channels is presented. A novel closed form expression for the moments of the end-to-end signal-to-noise ratio (SNR) is derived. The average bit error probability for coherent and non-coherent modulation schemes as well as the end-to-end outage probability of the considered system are also studied. Extensive numerically evaluated and computer simulations results are presented that verify the accuracy of the proposed mathematical analysis.\u

    On the Second Order Statistics of the Multihop Rayleigh Fading Channel

    Full text link
    Second order statistics provides a dynamic representation of a fading channel and plays an important role in the evaluation and design of the wireless communication systems. In this paper, we present a novel analytical framework for the evaluation of important second order statistical parameters, as the level crossing rate (LCR) and the average fade duration (AFD) of the amplify-and-forward multihop Rayleigh fading channel. More specifically, motivated by the fact that this channel is a cascaded one and can be modeled as the product of N fading amplitudes, we derive novel analytical expressions for the average LCR and the AFD of the product of N Rayleigh fading envelopes (or of the recently so-called N*Rayleigh channel). Furthermore, we derive simple and efficient closed-form approximations to the aforementioned parameters, using the multivariate Laplace approximation theorem. It is shown that our general results reduce to the corresponding ones of the specific dual-hop case, previously published. Numerical and computer simulation examples verify the accuracy of the presented mathematical analysis and show the tightness of the proposed approximations

    Level Crossing Rate and Average Fade Duration of the Multihop Rayleigh Fading Channel

    Full text link
    We present a novel analytical framework for the evaluation of important second order statistical parameters, as the level crossing rate (LCR) and the average fade duration (AFD) of the amplify-and-forward multihop Rayleigh fading channel. More specifically, motivated by the fact that this channel is a cascaded one, which can be modelled as the product of N fading amplitudes, we derive novel analytical expressions for the average LCR and AFD of the product of N Rayleigh fading envelopes, or of the recently so-called N*Rayleigh channel. Furthermore, we derive simple and efficient closed-form approximations to the aforementioned parameters, using the multivariate Laplace approximation theorem. It is shown that our general results reduce to the specific dual-hop case, previously published. Numerical and computer simulation examples verify the accuracy of the presented mathematical analysis and show the tightness of the proposed approximations

    Outage rates and outage durations of opportunistic relaying systems

    Full text link
    Opportunistic relaying is a simple yet efficient cooperation scheme that achieves full diversity and preserves the spectral efficiency among the spatially distributed stations. However, the stations' mobility causes temporal correlation of the system's capacity outage events, which gives rise to its important second-order outage statistical parameters, such as the average outage rate (AOR) and the average outage duration (AOD). This letter presents exact analytical expressions for the AOR and the AOD of an opportunistic relaying system, which employs a mobile source and a mobile destination (without a direct path), and an arbitrary number of (fixed-gain amplify-and-forward or decode-and-forward) mobile relays in Rayleigh fading environment

    Jointly Optimal Channel Pairing and Power Allocation for Multichannel Multihop Relaying

    Full text link
    We study the problem of channel pairing and power allocation in a multichannel multihop relay network to enhance the end-to-end data rate. Both amplify-and-forward (AF) and decode-and-forward (DF) relaying strategies are considered. Given fixed power allocation to the channels, we show that channel pairing over multiple hops can be decomposed into independent pairing problems at each relay, and a sorted-SNR channel pairing strategy is sum-rate optimal, where each relay pairs its incoming and outgoing channels by their SNR order. For the joint optimization of channel pairing and power allocation under both total and individual power constraints, we show that the problem can be decoupled into two subproblems solved separately. This separation principle is established by observing the equivalence between sorting SNRs and sorting channel gains in the jointly optimal solution. It significantly reduces the computational complexity in finding the jointly optimal solution. It follows that the channel pairing problem in joint optimization can be again decomposed into independent pairing problems at each relay based on sorted channel gains. The solution for optimizing power allocation for DF relaying is also provided, as well as an asymptotically optimal solution for AF relaying. Numerical results are provided to demonstrate substantial performance gain of the jointly optimal solution over some suboptimal alternatives. It is also observed that more gain is obtained from optimal channel pairing than optimal power allocation through judiciously exploiting the variation among multiple channels. Impact of the variation of channel gain, the number of channels, and the number of hops on the performance gain is also studied through numerical examples.Comment: 15 pages. IEEE Transactions on Signal Processin

    Jointly Optimal Channel Pairing and Power Allocation for Multichannel Multihop Relaying

    Full text link
    We study the problem of channel pairing and power allocation in a multichannel multihop relay network to enhance the end-to-end data rate. Both amplify-and-forward (AF) and decode-and-forward (DF) relaying strategies are considered. Given fixed power allocation to the channels, we show that channel pairing over multiple hops can be decomposed into independent pairing problems at each relay, and a sorted-SNR channel pairing strategy is sum-rate optimal, where each relay pairs its incoming and outgoing channels by their SNR order. For the joint optimization of channel pairing and power allocation under both total and individual power constraints, we show that the problem can be decoupled into two subproblems solved separately. This separation principle is established by observing the equivalence between sorting SNRs and sorting channel gains in the jointly optimal solution. It significantly reduces the computational complexity in finding the jointly optimal solution. It follows that the channel pairing problem in joint optimization can be again decomposed into independent pairing problems at each relay based on sorted channel gains. The solution for optimizing power allocation for DF relaying is also provided, as well as an asymptotically optimal solution for AF relaying. Numerical results are provided to demonstrate substantial performance gain of the jointly optimal solution over some suboptimal alternatives. It is also observed that more gain is obtained from optimal channel pairing than optimal power allocation through judiciously exploiting the variation among multiple channels. Impact of the variation of channel gain, the number of channels, and the number of hops on the performance gain is also studied through numerical examples.Comment: 15 pages. IEEE Transactions on Signal Processin

    Performance Analysis of Two-Hop Cooperative MIMO transmission with Relay Selection in Rayleigh Fading Channel

    Full text link
    Wireless relaying is one of the promising solutions to overcome the channel impairments and provide high data rate coverage that appears for beyond 3G mobile communications. In this paper we present an end to end BER performance analysis of dual hop wireless communication systems equipped with multiple decode and forward relays over the Rayleigh fading channel with relay selection. We select the best relay based on end to end channel conditions. We apply orthogonal space time block coding (OSTBC) at source, and also present how the multiple antennas at the source terminal affects the end to end BER performance. This intermediate relay technique will cover long distance where destination is out of reach from source.Comment: 5 figures, 4th International Conference on Wireless Communications, Networking and Mobile Computing, 2008. WiCOM '0

    Cooperative Relaying in Wireless Networks under Spatially and Temporally Correlated Interference

    Full text link
    We analyze the performance of an interference-limited, decode-and-forward, cooperative relaying system that comprises a source, a destination, and NN relays, placed arbitrarily on the plane and suffering from interference by a set of interferers placed according to a spatial Poisson process. In each transmission attempt, first the transmitter sends a packet; subsequently, a single one of the relays that received the packet correctly, if such a relay exists, retransmits it. We consider both selection combining and maximal ratio combining at the destination, Rayleigh fading, and interferer mobility. We derive expressions for the probability that a single transmission attempt is successful, as well as for the distribution of the transmission attempts until a packet is transmitted successfully. Results provide design guidelines applicable to a wide range of systems. Overall, the temporal and spatial characteristics of the interference play a significant role in shaping the system performance. Maximal ratio combining is only helpful when relays are close to the destination; in harsh environments, having many relays is especially helpful, and relay placement is critical; the performance improves when interferer mobility increases; and a tradeoff exists between energy efficiency and throughput
    • …
    corecore