8,739 research outputs found

    Towards a Cyber-Physical Gaming System for Training in the Construction and Engineering Industry

    Get PDF
    Antidepressants are among the most commonly detected human pharmaceuticals in the aquatic environment. Since their mode of action is by modulating the neurotransmitters serotonin, dopamine, and norepinephrine, aquatic invertebrates who possess transporters and receptors sensitive to activation by these pharmaceuticals are potentially affected by them. We review the various types of antidepressants, their occurrence and concentrations in aquatic environments, and the actions of neurohormones modulated by antidepressants in molluscs and crustaceans. Recent studies on the effects of antidepressants on these two important groups show that molluscan reproductive and locomotory systems are affected by antidepressants at environmentally relevant concentrations. In particular, antidepressants affect spawning and larval release in bivalves and disrupt locomotion and reduce fecundity in snails. In crustaceans, antidepressants affect freshwater amphipod activity patterns, marine amphipod photo- and geotactic behavior, crayfish aggression, and daphnid reproduction and development. We note with interest the occurrence of non-monotonic dose responses curves in many studies on effects of antidepressants on aquatic animals, often with effects at low concentrations, but not at higher concentrations, and we suggest future experiments consider testing a broader range of concentrations. Furthermore, we consider invertebrate immune responses, genomic and transcriptomic sequencing of invertebrate genes, and the ever-present and overwhelming question of how contaminant mixtures could affect the action of neurohormones as topics for future study. In addressing the question, if antidepressants affect aquatic invertebrates at concentrations currently found in the environment, there is strong evidence to suggest the answer is yes. Furthermore, the examples highlighted in this review provide compelling evidence that the effects could be quite multifaceted across a variety of biological systems

    CERN openlab Whitepaper on Future IT Challenges in Scientific Research

    Get PDF
    This whitepaper describes the major IT challenges in scientific research at CERN and several other European and international research laboratories and projects. Each challenge is exemplified through a set of concrete use cases drawn from the requirements of large-scale scientific programs. The paper is based on contributions from many researchers and IT experts of the participating laboratories and also input from the existing CERN openlab industrial sponsors. The views expressed in this document are those of the individual contributors and do not necessarily reflect the view of their organisations and/or affiliates

    A Wearable RFID-Based Navigation System for the Visually Impaired

    Full text link
    Recent studies have focused on developing advanced assistive devices to help blind or visually impaired people. Navigation is challenging for this community; however, developing a simple yet reliable navigation system is still an unmet need. This study targets the navigation problem and proposes a wearable assistive system. We developed a smart glove and shoe set based on radio-frequency identification technology to assist visually impaired people with navigation and orientation in indoor environments. The system enables the user to find the directions through audio feedback. To evaluate the device's performance, we designed a simple experimental setup. The proposed system has a simple structure and can be personalized according to the user's requirements. The results identified that the platform is reliable, power efficient, and accurate enough for indoor navigation.Comment: 6 pages, 6 figures, 3 table

    Measuring spatial and temporal features of physical interaction dynamics in the workplace

    Get PDF
    Human behavior unfolding through organisational life is a topic tackled from different disciplines, with emphasis on different aspects and with an overwhelming reliance on humans as observation instruments. Advances in pervasive technologies allow for the first time to capture and record location and time information behavior in real time, accurately, continuously and for multiparty events. This thesis concerns itself with the examination of the question: can these technologies provide insights into human behavior that current methods cannot? The way people use the buildings they work in, relate and physically interact with others, through time, is information that designers and managers make use of to create better buildings and better organisations. Current methods’ depiction of these issues - fairly static, discrete and short term, mostly dyadic - pales in comparison with the potential offered by location and time technologies. Or does it? Having found an organisation, where fifty-one workers each carried a tag sending out location and time information to one such system for six weeks, two parallel studies were conducted. One using current manual and other methods and the other the automated method developed in this thesis, both aiming to understand spatial and temporal characteristics of interpersonal behavior in the workplace. This new method is based on the concepts and measures of personal space and interaction distance that are used to define the mathematical boundaries of the behaviors subject of study, interaction and solo events. Outcome information from both methods is used to test hypotheses on some aspects of the spatial and temporal nature of knowledge work affected by interpersonal dynamics. This thesis proves that the data obtained through the technology can be converted in rich information on some aspects of workplace interaction dynamics offering unprecedented insights for designers and managers to produce better buildings and better organisations

    Present Challenges, Critical Needs, and Future Technological Directions for NASA's GN and C Engineering Discipline

    Get PDF
    The National Aeronautics and Space Administration (NASA) is currently undergoing a substantial redirection. Notable among the changes occurring within NASA is the stated emphasis on technology development, integration, and demonstration. These new changes within the Agency should have a positive impact on the GN&C discipline given the potential for sizeable investments for technology development and in-space demonstrations of both Autonomous Rendezvous & Docking (AR&D) systems and Autonomous Precision Landing (APL) systems. In this paper the NASA Technical Fellow for Guidance, Navigation and Control (GN&C) provides a summary of the present technical challenges, critical needs, and future technological directions for NASA s GN&C engineering discipline. A brief overview of the changes occurring within NASA that are driving a renewed emphasis on technology development will be presented as background. The potential benefits of the planned GN&C technology developments will be highlighted. This paper will provide a GN&C State-of-the-Discipline assessment. The discipline s readiness to support the goals & objectives of each of the four NASA Mission Directorates is evaluated and the technical challenges and barriers currently faced by the discipline are summarized. This paper will also discuss the need for sustained investments to sufficiently mature the several classes of GN&C technologies required to implement NASA crewed exploration and robotic science missions

    Emerging technologies for learning report (volume 3)

    Get PDF
    corecore