63,907 research outputs found

    High performance computing of explicit schemes for electrofusion jointing process based on message-passing paradigm

    Get PDF
    The research focused on heterogeneous cluster workstations comprising of a number of CPUs in single and shared architecture platform. The problem statements under consideration involved one dimensional parabolic equations. The thermal process of electrofusion jointing was also discussed. Numerical schemes of explicit type such as AGE, Brian, and Charlies Methods were employed. The parallelization of these methods were based on the domain decomposition technique. Some parallel performance measurement for these methods were also addressed. Temperature profile of the one dimensional radial model of the electrofusion process were also given

    Interval simulation: raising the level of abstraction in architectural simulation

    Get PDF
    Detailed architectural simulators suffer from a long development cycle and extremely long evaluation times. This longstanding problem is further exacerbated in the multi-core processor era. Existing solutions address the simulation problem by either sampling the simulated instruction stream or by mapping the simulation models on FPGAs; these approaches achieve substantial simulation speedups while simulating performance in a cycle-accurate manner This paper proposes interval simulation which rakes a completely different approach: interval simulation raises the level of abstraction and replaces the core-level cycle-accurate simulation model by a mechanistic analytical model. The analytical model estimates core-level performance by analyzing intervals, or the timing between two miss events (branch mispredictions and TLB/cache misses); the miss events are determined through simulation of the memory hierarchy, cache coherence protocol, interconnection network and branch predictor By raising the level of abstraction, interval simulation reduces both development time and evaluation time. Our experimental results using the SPEC CPU2000 and PARSEC benchmark suites and the MS multi-core simulator show good accuracy up to eight cores (average error of 4.6% and max error of 11% for the multi-threaded full-system workloads), while achieving a one order of magnitude simulation speedup compared to cycle-accurate simulation. Moreover interval simulation is easy to implement: our implementation of the mechanistic analytical model incurs only one thousand lines of code. Its high accuracy, fast simulation speed and ease-of-use make interval simulation a useful complement to the architect's toolbox for exploring system-level and high-level micro-architecture trade-offs

    The multi-program performance model: debunking current practice in multi-core simulation

    Get PDF
    Composing a representative multi-program multi-core workload is non-trivial. A multi-core processor can execute multiple independent programs concurrently, and hence, any program mix can form a potential multi-program workload. Given the very large number of possible multiprogram workloads and the limited speed of current simulation methods, it is impossible to evaluate all possible multi-program workloads. This paper presents the Multi-Program Performance Model (MPPM), a method for quickly estimating multiprogram multi-core performance based on single-core simulation runs. MPPM employs an iterative method to model the tight performance entanglement between co-executing programs on a multi-core processor with shared caches. Because MPPM involves analytical modeling, it is very fast, and it estimates multi-core performance for a very large number of multi-program workloads in a reasonable amount of time. In addition, it provides confidence bounds on its performance estimates. Using SPEC CPU2006 and up to 16 cores, we report an average performance prediction error of 2.3% and 2.9% for system throughput (STP) and average normalized turnaround time (ANTT), respectively, while being up to five orders of magnitude faster than detailed simulation. Subsequently, we demonstrate that randomly picking a limited number of multi-program workloads, as done in current pactice, can lead to incorrect design decisions in practical design and research studies, which is alleviated using MPPM. In addition, MPPM can be used to quickly identify multi-program workloads that stress multi-core performance through excessive conflict behavior in shared caches; these stress workloads can then be used for driving the design process further

    Throughput-Distortion Computation Of Generic Matrix Multiplication: Toward A Computation Channel For Digital Signal Processing Systems

    Get PDF
    The generic matrix multiply (GEMM) function is the core element of high-performance linear algebra libraries used in many computationally-demanding digital signal processing (DSP) systems. We propose an acceleration technique for GEMM based on dynamically adjusting the imprecision (distortion) of computation. Our technique employs adaptive scalar companding and rounding to input matrix blocks followed by two forms of packing in floating-point that allow for concurrent calculation of multiple results. Since the adaptive companding process controls the increase of concurrency (via packing), the increase in processing throughput (and the corresponding increase in distortion) depends on the input data statistics. To demonstrate this, we derive the optimal throughput-distortion control framework for GEMM for the broad class of zero-mean, independent identically distributed, input sources. Our approach converts matrix multiplication in programmable processors into a computation channel: when increasing the processing throughput, the output noise (error) increases due to (i) coarser quantization and (ii) computational errors caused by exceeding the machine-precision limitations. We show that, under certain distortion in the GEMM computation, the proposed framework can significantly surpass 100% of the peak performance of a given processor. The practical benefits of our proposal are shown in a face recognition system and a multi-layer perceptron system trained for metadata learning from a large music feature database.Comment: IEEE Transactions on Signal Processing (vol. 60, 2012

    A Detailed Analysis of Contemporary ARM and x86 Architectures

    Get PDF
    RISC vs. CISC wars raged in the 1980s when chip area and processor design complexity were the primary constraints and desktops and servers exclusively dominated the computing landscape. Today, energy and power are the primary design constraints and the computing landscape is significantly different: growth in tablets and smartphones running ARM (a RISC ISA) is surpassing that of desktops and laptops running x86 (a CISC ISA). Further, the traditionally low-power ARM ISA is entering the high-performance server market, while the traditionally high-performance x86 ISA is entering the mobile low-power device market. Thus, the question of whether ISA plays an intrinsic role in performance or energy efficiency is becoming important, and we seek to answer this question through a detailed measurement based study on real hardware running real applications. We analyze measurements on the ARM Cortex-A8 and Cortex-A9 and Intel Atom and Sandybridge i7 microprocessors over workloads spanning mobile, desktop, and server computing. Our methodical investigation demonstrates the role of ISA in modern microprocessors? performance and energy efficiency. We find that ARM and x86 processors are simply engineering design points optimized for different levels of performance, and there is nothing fundamentally more energy efficient in one ISA class or the other. The ISA being RISC or CISC seems irrelevant
    corecore