124 research outputs found

    A variational scheme for hyperbolic obstacle problems

    Get PDF
    We consider an obstacle problem for (possibly non-local) wave equations, and we prove existence of weak solutions through a convex minimization approach based on a time discrete approximation scheme. We provide the corresponding numerical implementation and raise some open questions

    External optimal control of fractional parabolic PDEs

    Full text link
    In this paper we introduce a new notion of optimal control, or source identification in inverse, problems with fractional parabolic PDEs as constraints. This new notion allows a source/control placement outside the domain where the PDE is fulfilled. We tackle the Dirichlet, the Neumann and the Robin cases. For the fractional elliptic PDEs this has been recently investigated by the authors in \cite{HAntil_RKhatri_MWarma_2018a}. The need for these novel optimal control concepts stems from the fact that the classical PDE models only allow placing the source/control either on the boundary or in the interior where the PDE is satisfied. However, the nonlocal behavior of the fractional operator now allows placing the control in the exterior. We introduce the notions of weak and very-weak solutions to the parabolic Dirichlet problem. We present an approach on how to approximate the parabolic Dirichlet solutions by the parabolic Robin solutions (with convergence rates). A complete analysis for the Dirichlet and Robin optimal control problems has been discussed. The numerical examples confirm our theoretical findings and further illustrate the potential benefits of nonlocal models over the local ones.Comment: arXiv admin note: text overlap with arXiv:1811.0451

    Fast Solvers for Cahn-Hilliard Inpainting

    Get PDF
    We consider the efficient solution of the modified Cahn-Hilliard equation for binary image inpainting using convexity splitting, which allows an unconditionally gradient stable time-discretization scheme. We look at a double-well as well as a double obstacle potential. For the latter we get a nonlinear system for which we apply a semi-smooth Newton method combined with a Moreau-Yosida regularization technique. At the heart of both methods lies the solution of large and sparse linear systems. We introduce and study block-triangular preconditioners using an efficient and easy to apply Schur complement approximation. Numerical results indicate that our preconditioners work very well for both problems and show that qualitatively better results can be obtained using the double obstacle potential

    Challenges in Optimal Control of Nonlinear PDE-Systems

    Get PDF
    The workshop focussed on various aspects of optimal control problems for systems of nonlinear partial differential equations. In particular, discussions around keynote presentations in the areas of optimal control of nonlinear/non-smooth systems, optimal control of systems involving nonlocal operators, shape and topology optimization, feedback control and stabilization, sparse control, and associated numerical analysis as well as design and analysis of solution algorithms were promoted. Moreover, also aspects of control of fluid structure interaction problems as well as problems arising in the optimal control of quantum systems were considered

    Proximal Galerkin: A structure-preserving finite element method for pointwise bound constraints

    Full text link
    The proximal Galerkin finite element method is a high-order, low iteration complexity, nonlinear numerical method that preserves the geometric and algebraic structure of bound constraints in infinite-dimensional function spaces. This paper introduces the proximal Galerkin method and applies it to solve free boundary problems, enforce discrete maximum principles, and develop scalable, mesh-independent algorithms for optimal design. The paper leads to a derivation of the latent variable proximal point (LVPP) algorithm: an unconditionally stable alternative to the interior point method. LVPP is an infinite-dimensional optimization algorithm that may be viewed as having an adaptive barrier function that is updated with a new informative prior at each (outer loop) optimization iteration. One of the main benefits of this algorithm is witnessed when analyzing the classical obstacle problem. Therein, we find that the original variational inequality can be replaced by a sequence of semilinear partial differential equations (PDEs) that are readily discretized and solved with, e.g., high-order finite elements. Throughout this work, we arrive at several unexpected contributions that may be of independent interest. These include (1) a semilinear PDE we refer to as the entropic Poisson equation; (2) an algebraic/geometric connection between high-order positivity-preserving discretizations and certain infinite-dimensional Lie groups; and (3) a gradient-based, bound-preserving algorithm for two-field density-based topology optimization. The complete latent variable proximal Galerkin methodology combines ideas from nonlinear programming, functional analysis, tropical algebra, and differential geometry and can potentially lead to new synergies among these areas as well as within variational and numerical analysis

    The nonlinear N-membranes evolution problem

    Get PDF
    The parabolic N-membranes problem for the p-Laplacian and the complete order constraint on the components of the solution is studied in what concerns the approximation, the regularity and the stability of the variational solutions. We extend to the evolutionary case the characterization of the Lagrange multipliers associated with the ordering constraint in terms of the characteristic functions of the coincidence sets. We give continuous dependence results, and study the asymptotic behavior as t→∞t \to \infty of the solution and the coincidence sets, showing that they converge to their stationary counterparts.Comment: 16 page
    • …
    corecore