1,763 research outputs found

    Electronic tools for designing charts and graphs

    Get PDF
    Thesis (M.S.V.S.)--Massachusetts Institute of Technology, Dept. of Architecture, 1983.MICROFICHE COPY AVAILABLE IN ARCHIVES AND ROTCHIncludes bibliographical references (leaves 94-99).This thesis explores the issues involved in designing an interactive chart and graph making system, especially tailored to the needs of the graphic designer. It defines a set of user interface requirements and describe the implementation of the prototype software system.by Mary Jones.M.S.V.S

    Multi-touch For General-purpose Computing An Examination Of Text Entry

    Get PDF
    In recent years, multi-touch has been heralded as a revolution in humancomputer interaction. Multi-touch provides features such as gestural interaction, tangible interfaces, pen-based computing, and interface customization – features embraced by an increasingly tech-savvy public. However, multi-touch platforms have not been adopted as everyday computer interaction devices; that is, multi-touch has not been applied to general-purpose computing. The questions this thesis seeks to address are: Will the general public adopt these systems as their chief interaction paradigm? Can multi-touch provide such a compelling platform that it displaces the desktop mouse and keyboard? Is multi-touch truly the next revolution in human-computer interaction? As a first step toward answering these questions, we observe that generalpurpose computing relies on text input, and ask: Can multi-touch, without a text entry peripheral, provide a platform for efficient text entry? And, by extension, is such a platform viable for general-purpose computing? We investigate these questions through four user studies that collected objective and subjective data for text entry and word processing tasks. The first of these studies establishes a benchmark for text entry performance on a multi-touch platform, across a variety of input modes. The second study attempts to improve this performance by iv examining an alternate input technique. The third and fourth studies include mousestyle interaction for formatting rich-text on a multi-touch platform, in the context of a word processing task. These studies establish a foundation for future efforts in general-purpose computing on a multi-touch platform. Furthermore, this work details deficiencies in tactile feedback with modern multi-touch platforms, and describes an exploration of audible feedback. Finally, the thesis conveys a vision for a general-purpose multi-touch platform, its design and rationale

    Learning Opportunities and Challenges of Sensor-enabled Intelligent Tutoring Systems on Mobile Platforms: Benchmarking the Reliability of Mobile Sensors to Track Human Physiological Signals and Behaviors to Enhance Tablet-Based Intelligent Tutoring Systems

    Get PDF
    Desktop-based intelligent tutoring systems have existed for many decades, but the advancement of mobile computing technologies has sparked interest in developing mobile intelligent tutoring systems (mITS). Personalized mITS are applicable to not only stand-alone and client-server systems but also cloud systems possibly leveraging big data. Device-based sensors enable even greater personalization through capture of physiological signals during periods of student study. However, personalizing mITS to individual students faces challenges. The Achilles heel of personalization is the feasibility and reliability of these sensors to accurately capture physiological signals and behavior measures. This research reviews feasibility and benchmarks reliability of basic mobile platform sensors in various student postures. The research software and methodology are generalizable to a range of platforms and sensors. Incorporating the tile-based puzzle game 2048 as a substitute for a knowledge domain also enables a broad spectrum of test populations. Baseline sensors include the on-board camera to detect eyes/faces and the Bluetooth Empatica E4 wristband to capture heart rate, electrodermal activity (EDA), and skin temperature. The test population involved 100 collegiate students randomly assigned to one of three different ergonomic positions in a classroom: sitting at a table, standing at a counter, or reclining on a sofa. Well received by the students, EDA proved to be more reliable than heart rate or face detection in the three different ergonomic positions. Additional insights are provided on advancing learning personalization through future sensor feasibility and reliability studies

    Designing for Cross-Device Interactions

    Get PDF
    Driven by technological advancements, we now own and operate an ever-growing number of digital devices, leading to an increased amount of digital data we produce, use, and maintain. However, while there is a substantial increase in computing power and availability of devices and data, many tasks we conduct with our devices are not well connected across multiple devices. We conduct our tasks sequentially instead of in parallel, while collaborative work across multiple devices is cumbersome to set up or simply not possible. To address these limitations, this thesis is concerned with cross-device computing. In particular it aims to conceptualise, prototype, and study interactions in cross-device computing. This thesis contributes to the field of Human-Computer Interaction (HCI)—and more specifically to the area of cross-device computing—in three ways: first, this work conceptualises previous work through a taxonomy of cross-device computing resulting in an in-depth understanding of the field, that identifies underexplored research areas, enabling the transfer of key insights into the design of interaction techniques. Second, three case studies were conducted that show how cross-device interactions can support curation work as well as augment users’ existing devices for individual and collaborative work. These case studies incorporate novel interaction techniques for supporting cross-device work. Third, through studying cross-device interactions and group collaboration, this thesis provides insights into how researchers can understand and evaluate multi- and cross-device interactions for individual and collaborative work. We provide a visualization and querying tool that facilitates interaction analysis of spatial measures and video recordings to facilitate such evaluations of cross-device work. Overall, the work in this thesis advances the field of cross-device computing with its taxonomy guiding research directions, novel interaction techniques and case studies demonstrating cross-device interactions for curation, and insights into and tools for effective evaluation of cross-device systems

    Interacting "Through the Display"

    Get PDF
    The increasing availability of displays at lower costs has led to a proliferation of such in our everyday lives. Additionally, mobile devices are ready to hand and have been proposed as interaction devices for external screens. However, only their input mechanism was taken into account without considering three additional factors in environments hosting several displays: first, a connection needs to be established to the desired target display (modality). Second, screens in the environment may be re-arranged (flexibility). And third, displays may be out of the user’s reach (distance). In our research we aim to overcome the problems resulting from these characteristics. The overall goal is a new interaction model that allows for (1) a non-modal connection mechanism for impromptu use on various displays in the environment, (2) interaction on and across displays in highly flexible environments, and (3) interacting at variable distances. In this work we propose a new interaction model called through the display interaction which enables users to interact with remote content on their personal device in an absolute and direct fashion. To gain a better understanding of the effects of the additional characteristics, we implemented two prototypes each of which investigates a different distance to the target display: LucidDisplay allows users to place their mobile device directly on top of a larger external screen. MobileVue on the other hand enables users to interact with an external screen at a distance. In each of these prototypes we analyzed their effects on the remaining two criteria – namely the modality of the connection mechanism as well as the flexibility of the environment. With the findings gained in this initial phase we designed Shoot & Copy, a system that allows the detection of screens purely based on their visual content. Users aim their personal device’s camera at the target display which then appears in live video shown in the viewfinder. To select an item, users take a picture which is analyzed to determine the targeted region. We further extended this approach to multiple displays by using a centralized component serving as gateway to the display environment. In Tap & Drop we refined this prototype to support real-time feedback. Instead of taking pictures, users can now aim their mobile device at the display resulting and start interacting immediately. In doing so, we broke the rigid sequential interaction of content selection and content manipulation. Both prototypes allow for (1) connections in a non-modal way (i.e., aim at the display and start interacting with it) from the user’s point of view and (2) fully flexible environments (i.e., the mobile device tracks itself with respect to displays in the environment). However, the wide-angle lenses and thus greater field of views of current mobile devices still do not allow for variable distances. In Touch Projector, we overcome this limitation by introducing zooming in combination with temporarily freezing the video image. Based on our extensions to taxonomy of mobile device interaction on external displays, we created a refined model of interacting through the display for mobile use. It enables users to interact impromptu without explicitly establishing a connection to the target display (non-modal). As the mobile device tracks itself with respect to displays in the environment, the model further allows for full flexibility of the environment (i.e., displays can be re-arranged without affecting on the interaction). And above all, users can interact with external displays regardless of their actual size at variable distances without any loss of accuracy.Die steigende Verfügbarkeit von Bildschirmen hat zu deren Verbreitung in unserem Alltag geführt. Ferner sind mobile Geräte immer griffbereit und wurden bereits als Interaktionsgeräte für zusätzliche Bildschirme vorgeschlagen. Es wurden jedoch nur Eingabemechanismen berücksichtigt ohne näher auf drei weitere Faktoren in Umgebungen mit mehreren Bildschirmen einzugehen: (1) Beide Geräte müssen verbunden werden (Modalität). (2) Bildschirme können in solchen Umgebungen umgeordnet werden (Flexibilität). (3) Monitore können außer Reichweite sein (Distanz). Wir streben an, die Probleme, die durch diese Eigenschaften auftreten, zu lösen. Das übergeordnete Ziel ist ein Interaktionsmodell, das einen nicht-modalen Verbindungsaufbau für spontane Verwendung von Bildschirmen in solchen Umgebungen, (2) Interaktion auf und zwischen Bildschirmen in flexiblen Umgebungen, und (3) Interaktionen in variablen Distanzen erlaubt. Wir stellen ein Modell (Interaktion durch den Bildschirm) vor, mit dem Benutzer mit entfernten Inhalten in direkter und absoluter Weise auf ihrem Mobilgerät interagieren können. Um die Effekte der hinzugefügten Charakteristiken besser zu verstehen, haben wir zwei Prototypen für unterschiedliche Distanzen implementiert: LucidDisplay erlaubt Benutzern ihr mobiles Gerät auf einen größeren, sekundären Bildschirm zu legen. Gegensätzlich dazu ermöglicht MobileVue die Interaktion mit einem zusätzlichen Monitor in einer gewissen Entfernung. In beiden Prototypen haben wir dann die Effekte der verbleibenden zwei Kriterien (d.h. Modalität des Verbindungsaufbaus und Flexibilität der Umgebung) analysiert. Mit den in dieser ersten Phase erhaltenen Ergebnissen haben wir Shoot & Copy entworfen. Dieser Prototyp erlaubt die Erkennung von Bildschirmen einzig über deren visuellen Inhalt. Benutzer zeigen mit der Kamera ihres Mobilgeräts auf einen Bildschirm dessen Inhalt dann in Form von Video im Sucher dargestellt wird. Durch die Aufnahme eines Bildes (und der darauf folgenden Analyse) wird Inhalt ausgewählt. Wir haben dieses Konzept zudem auf mehrere Bildschirme erweitert, indem wir eine zentrale Instanz verwendet haben, die als Schnittstelle zur Umgebung agiert. Mit Tap & Drop haben wir den Prototyp verfeinert, um Echtzeit-Feedback zu ermöglichen. Anstelle der Bildaufnahme können Benutzer nun ihr mobiles Gerät auf den Bildschirm richten und sofort interagieren. Dadurch haben wir die strikt sequentielle Interaktion (Inhalt auswählen und Inhalt manipulieren) aufgebrochen. Beide Prototypen erlauben bereits nicht-modale Verbindungsmechanismen in flexiblen Umgebungen. Die in heutigen Mobilgeräten verwendeten Weitwinkel-Objektive erlauben jedoch nach wie vor keine variablen Distanzen. Mit Touch Projector beseitigen wir diese Einschränkung, indem wir Zoomen in Kombination mit einer vorübergehenden Pausierung des Videos im Sucher einfügen. Basierend auf den Erweiterungen der Klassifizierung von Interaktionen mit zusätzlichen Bildschirmen durch mobile Geräte haben wir ein verbessertes Modell (Interaktion durch den Bildschirm) erstellt. Es erlaubt Benutzern spontan zu interagieren, ohne explizit eine Verbindung zum zweiten Bildschirm herstellen zu müssen (nicht-modal). Da das mobile Gerät seinen räumlichen Bezug zu allen Bildschirmen selbst bestimmt, erlaubt unser Modell zusätzlich volle Flexibilität in solchen Umgebungen. Darüber hinaus können Benutzer mit zusätzlichen Bildschirmen (unabhängig von deren Größe) in variablen Entfernungen interagieren

    A Utility Framework for Selecting Immersive Interactive Capability and Technology for Virtual Laboratories

    Get PDF
    There has been an increase in the use of virtual reality (VR) technology in the education community since VR is emerging as a potent educational tool that offers students with a rich source of educational material and makes learning exciting and interactive. With a rise of popularity and market expansion in VR technology in the past few years, a variety of consumer VR electronics have boosted educators and researchers’ interest in using these devices for practicing engineering and science laboratory experiments. However, little is known about how such devices may be well-suited for active learning in a laboratory environment. This research aims to address this gap by formulating a utility framework to help educators and decision-makers efficiently select a type of VR device that matches with their design and capability requirements for their virtual laboratory blueprint. Furthermore, a framework use case is demonstrated by not only surveying five types of VR devices ranging from low-immersive to full-immersive along with their capabilities (i.e., hardware specifications, cost, and availability) but also considering the interaction techniques in each VR device based on the desired laboratory task. To validate the framework, a research study is carried out to compare these five VR devices and investigate which device can provide an overall best-fit for a 3D virtual laboratory content that we implemented based on the interaction level, usability and performance effectiveness
    • …
    corecore