4,891 research outputs found

    Taxonomy of P2P Applications

    Get PDF
    Peer-to-peer (p2p) networks have gained immense popularity in recent years and the number of services they provide continuously rises. Where p2p-networks were formerly known as file-sharing networks, p2p is now also used for services like VoIP and IPTV. With so many different p2p applications and services the need for a taxonomy framework rises. This paper describes the available p2p applications grouped by the services they provide. A taxonomy framework is proposed to classify old and recent p2p applications based on their characteristics

    The state of peer-to-peer network simulators

    Get PDF
    Networking research often relies on simulation in order to test and evaluate new ideas. An important requirement of this process is that results must be reproducible so that other researchers can replicate, validate and extend existing work. We look at the landscape of simulators for research in peer-to-peer (P2P) networks by conducting a survey of a combined total of over 280 papers from before and after 2007 (the year of the last survey in this area), and comment on the large quantity of research using bespoke, closed-source simulators. We propose a set of criteria that P2P simulators should meet, and poll the P2P research community for their agreement. We aim to drive the community towards performing their experiments on simulators that allow for others to validate their results

    CliqueStream: an efficient and fault-resilient live streaming network on a clustered peer-to-peer overlay

    Full text link
    Several overlay-based live multimedia streaming platforms have been proposed in the recent peer-to-peer streaming literature. In most of the cases, the overlay neighbors are chosen randomly for robustness of the overlay. However, this causes nodes that are distant in terms of proximity in the underlying physical network to become neighbors, and thus data travels unnecessary distances before reaching the destination. For efficiency of bulk data transmission like multimedia streaming, the overlay neighborhood should resemble the proximity in the underlying network. In this paper, we exploit the proximity and redundancy properties of a recently proposed clique-based clustered overlay network, named eQuus, to build efficient as well as robust overlays for multimedia stream dissemination. To combine the efficiency of content pushing over tree structured overlays and the robustness of data-driven mesh overlays, higher capacity stable nodes are organized in tree structure to carry the long haul traffic and less stable nodes with intermittent presence are organized in localized meshes. The overlay construction and fault-recovery procedures are explained in details. Simulation study demonstrates the good locality properties of the platform. The outage time and control overhead induced by the failure recovery mechanism are minimal as demonstrated by the analysis.Comment: 10 page

    AngelCast: cloud-based peer-assisted live streaming using optimized multi-tree construction

    Full text link
    Increasingly, commercial content providers (CPs) offer streaming solutions using peer-to-peer (P2P) architectures, which promises significant scalabil- ity by leveraging clients’ upstream capacity. A major limitation of P2P live streaming is that playout rates are constrained by clients’ upstream capac- ities – typically much lower than downstream capacities – which limit the quality of the delivered stream. To leverage P2P architectures without sacri- ficing quality, CPs must commit additional resources to complement clients’ resources. In this work, we propose a cloud-based service AngelCast that enables CPs to complement P2P streaming. By subscribing to AngelCast, a CP is able to deploy extra resources (angel), on-demand from the cloud, to maintain a desirable stream quality. Angels do not download the whole stream, nor are they in possession of it. Rather, angels only relay the minimal fraction of the stream necessary to achieve the desired quality. We provide a lower bound on the minimum angel capacity needed to maintain a desired client bit-rate, and develop a fluid model construction to achieve it. Realizing the limitations of the fluid model construction, we design a practical multi- tree construction that captures the spirit of the optimal construction, and avoids its limitations. We present a prototype implementation of AngelCast, along with experimental results confirming the feasibility of our service.Supported in part by NSF awards #0720604, #0735974, #0820138, #0952145, #1012798 #1012798 #1430145 #1414119. (0720604 - NSF; 0735974 - NSF; 0820138 - NSF; 0952145 - NSF; 1012798 - NSF; 1430145 - NSF; 1414119 - NSF

    A Survey on Adaptive Multimedia Streaming

    Get PDF
    Internet was primarily designed for one to one applications like electronic mail, reliable file transfer etc. However, the technological growth in both hardware and software industry have written in unprecedented success story of the growth of Internet and have paved the paths of modern digital evolution. In today’s world, the internet has become the way of life and has penetrated in its every domain. It is nearly impossible to list the applications which make use of internet in this era however, all these applications are data intensive and data may be textual, audio or visual requiring improved techniques to deal with these. Multimedia applications are one of them and have witnessed unprecedented growth in last few years. A predominance of that is by virtue of different video streaming applications in daily life like games, education, entertainment, security etc. Due to the huge demand of multimedia applications, heterogeneity of demands and limited resource availability there is a dire need of adaptive multimedia streaming. This chapter provides the detail discussion over different adaptive multimedia streaming mechanism over peer to peer network

    Video-on-Demand over Internet: a survey of existing systems and solutions

    Get PDF
    Video-on-Demand is a service where movies are delivered to distributed users with low delay and free interactivity. The traditional client/server architecture experiences scalability issues to provide video streaming services, so there have been many proposals of systems, mostly based on a peer-to-peer or on a hybrid server/peer-to-peer solution, to solve this issue. This work presents a survey of the currently existing or proposed systems and solutions, based upon a subset of representative systems, and defines selection criteria allowing to classify these systems. These criteria are based on common questions such as, for example, is it video-on-demand or live streaming, is the architecture based on content delivery network, peer-to-peer or both, is the delivery overlay tree-based or mesh-based, is the system push-based or pull-based, single-stream or multi-streams, does it use data coding, and how do the clients choose their peers. Representative systems are briefly described to give a summarized overview of the proposed solutions, and four ones are analyzed in details. Finally, it is attempted to evaluate the most promising solutions for future experiments. Résumé La vidéo à la demande est un service où des films sont fournis à distance aux utilisateurs avec u
    corecore