214 research outputs found

    Service quality assurance for the IPTV networks

    Get PDF
    The objective of the proposed research is to design and evaluate end-to-end solutions to support the Quality of Experience (QoE) for the Internet Protocol Television (IPTV) service. IPTV is a system that integrates voice, video, and data delivery into a single Internet Protocol (IP) framework to enable interactive broadcasting services at the subscribers. It promises significant advantages for both service providers and subscribers. For instance, unlike conventional broadcasting systems, IPTV broadcasts will not be restricted by the limited number of channels in the broadcast/radio spectrum. Furthermore, IPTV will provide its subscribers with the opportunity to access and interact with a wide variety of high-quality on-demand video content over the Internet. However, these advantages come at the expense of stricter quality of service (QoS) requirements than traditional Internet applications. Since IPTV is considered as a real-time broadcast service over the Internet, the success of the IPTV service depends on the QoE perceived by the end-users. The characteristics of the video traffic as well as the high-quality requirements of the IPTV broadcast impose strict requirements on transmission delay. IPTV framework has to provide mechanisms to satisfy the stringent delay, jitter, and packet loss requirements of the IPTV service over lossy transmission channels with varying characteristics. The proposed research focuses on error recovery and channel change latency problems in IPTV networks. Our specific aim is to develop a content delivery framework that integrates content features, IPTV application requirements, and network characteristics in such a way that the network resource utilization can be optimized for the given constraints on the user perceived service quality. To achieve the desired QoE levels, the proposed research focuses on the design of resource optimal server-based and peer-assisted delivery techniques. First, by analyzing the tradeoffs on the use of proactive and reactive repair techniques, a solution that optimizes the error recovery overhead is proposed. Further analysis on the proposed solution is performed by also focusing on the use of multicast error recovery techniques. By investigating the tradeoffs on the use of network-assisted and client-based channel change solutions, distributed content delivery frameworks are proposed to optimize the error recovery performance. Next, bandwidth and latency tradeoffs associated with the use of concurrent delivery streams to support the IPTV channel change are analyzed, and the results are used to develop a resource-optimal channel change framework that greatly improves the latency performance in the network. For both problems studied in this research, scalability concerns for the IPTV service are addressed by properly integrating peer-based delivery techniques into server-based solutions.Ph.D

    Video-on-Demand over Internet: a survey of existing systems and solutions

    Get PDF
    Video-on-Demand is a service where movies are delivered to distributed users with low delay and free interactivity. The traditional client/server architecture experiences scalability issues to provide video streaming services, so there have been many proposals of systems, mostly based on a peer-to-peer or on a hybrid server/peer-to-peer solution, to solve this issue. This work presents a survey of the currently existing or proposed systems and solutions, based upon a subset of representative systems, and defines selection criteria allowing to classify these systems. These criteria are based on common questions such as, for example, is it video-on-demand or live streaming, is the architecture based on content delivery network, peer-to-peer or both, is the delivery overlay tree-based or mesh-based, is the system push-based or pull-based, single-stream or multi-streams, does it use data coding, and how do the clients choose their peers. Representative systems are briefly described to give a summarized overview of the proposed solutions, and four ones are analyzed in details. Finally, it is attempted to evaluate the most promising solutions for future experiments. Résumé La vidéo à la demande est un service où des films sont fournis à distance aux utilisateurs avec u

    Exploring the design space of cooperative streaming multicast

    Get PDF
    Video streaming over the Internet is rapidly rising in popularity, but the availability and quality of video content is currently limited by the high bandwidth costs and infrastructure needs of server-based solutions. Recently, however, cooperative end-system multicast (CEM) has emerged as a promising paradigm for content distribution in the Internet, because the bandwidth overhead of disseminating content is shared among the participants of the CEM overlay network. In this thesis, we identify the dimensions in the design space of CEMs, explore the design space, and seek to understand the inherent tradeoffs of different design choices. In the first part of the thesis, we study the control mechanisms for CEM overlay maintenance. We demonstrate that the control task of neighbor acquisition in CEMs can be factored out into a separate control overlay that provides a single primitive: a configurable anycast for peer selection. The separation of control from data overlay avoids the efficiency tradeoffs that afflict some of the current systems. The anycast primitive can be used to build and maintain different data overlay organizations like single-tree, multi-tree, mesh-based, and hybrids, by expressing appropriate policies. We built SAAR, a reusable, shared control overlay for CEMs, that efficiently implements this anycast primitive, and thereby, efficiently serves the control needs for CEMs. In the second part of the thesis, we focus on techniques for data dissemination. We built a common framework in which different CEM data delivery techniques can be faithfully compared. A systematic empirical comparison of CEM design choices demonstrates that there is no single approach that is best in all scenarios. In fact, our results suggest that every CEM protocol is inherently limited in certain aspects of its performance. We distill our observations into a novel model that explains the inherent tradeoffs of CEM design choices and provides bounds on the practical performance limits of any future CEM protocol. In particular, the model asserts that no CEM design can simultaneously achieve all three of low overhead, low lag, and high streaming quality
    • …
    corecore