2,605 research outputs found

    How many crowdsourced workers should a requester hire?

    Get PDF
    Recent years have seen an increased interest in crowdsourcing as a way of obtaining information from a potentially large group of workers at a reduced cost. The crowdsourcing process, as we consider in this paper, is as follows: a requester hires a number of workers to work on a set of similar tasks. After completing the tasks, each worker reports back outputs. The requester then aggregates the reported outputs to obtain aggregate outputs. A crucial question that arises during this process is: how many crowd workers should a requester hire? In this paper, we investigate from an empirical perspective the optimal number of workers a requester should hire when crowdsourcing tasks, with a particular focus on the crowdsourcing platform Amazon Mechanical Turk. Specifically, we report the results of three studies involving different tasks and payment schemes. We find that both the expected error in the aggregate outputs as well as the risk of a poor combination of workers decrease as the number of workers increases. Surprisingly, we find that the optimal number of workers a requester should hire for each task is around 10 to 11, no matter the underlying task and payment scheme. To derive such a result, we employ a principled analysis based on bootstrapping and segmented linear regression. Besides the above result, we also find that overall top-performing workers are more consistent across multiple tasks than other workers. Our results thus contribute to a better understanding of, and provide new insights into, how to design more effective crowdsourcing processes

    Does Confidence Reporting from the Crowd Benefit Crowdsourcing Performance?

    Full text link
    We explore the design of an effective crowdsourcing system for an MM-ary classification task. Crowd workers complete simple binary microtasks whose results are aggregated to give the final classification decision. We consider the scenario where the workers have a reject option so that they are allowed to skip microtasks when they are unable to or choose not to respond to binary microtasks. Additionally, the workers report quantized confidence levels when they are able to submit definitive answers. We present an aggregation approach using a weighted majority voting rule, where each worker's response is assigned an optimized weight to maximize crowd's classification performance. We obtain a couterintuitive result that the classification performance does not benefit from workers reporting quantized confidence. Therefore, the crowdsourcing system designer should employ the reject option without requiring confidence reporting.Comment: 6 pages, 4 figures, SocialSens 2017. arXiv admin note: text overlap with arXiv:1602.0057
    • …
    corecore