7,786 research outputs found

    Using the Literature to Identify Confounders

    Get PDF
    Prior work in causal modeling has focused primarily on learning graph structures and parameters to model data generating processes from observational or experimental data, while the focus of the literature-based discovery paradigm was to identify novel therapeutic hypotheses in publicly available knowledge. The critical contribution of this dissertation is to refashion the literature-based discovery paradigm as a means to populate causal models with relevant covariates to abet causal inference. In particular, this dissertation describes a generalizable framework for mapping from causal propositions in the literature to subgraphs populated by instantiated variables that reflect observational data. The observational data are those derived from electronic health records. The purpose of causal inference is to detect adverse drug event signals. The Principle of the Common Cause is exploited as a heuristic for a defeasible practical logic. The fundamental intuition is that improbable co-occurrences can be “explained away” with reference to a common cause, or confounder. Semantic constraints in literature-based discovery can be leveraged to identify such covariates. Further, the asymmetric semantic constraints of causal propositions map directly to the topology of causal graphs as directed edges. The hypothesis is that causal models conditioned on sets of such covariates will improve upon the performance of purely statistical techniques for detecting adverse drug event signals. By improving upon previous work in purely EHR-based pharmacovigilance, these results establish the utility of this scalable approach to automated causal inference

    Refining adverse drug reaction signals by incorporating interaction variables identified using emergent pattern mining

    Get PDF
    Purpose: To develop a framework for identifying and incorporating candidate confounding interaction terms into a regularised cox regression analysis to refine adverse drug reaction signals obtained via longitudinal observational data. Methods: We considered six drug families that are commonly associated with myocardial infarction in observational healthcare data, but where the causal relationship ground truth is known (adverse drug reaction or not). We applied emergent pattern mining to find itemsets of drugs and medical events that are associated with the development of myocardial infarction. These are the candidate confounding interaction terms. We then implemented a cohort study design using regularised cox regression that incorporated and accounted for the candidate confounding interaction terms. Results: The methodology was able to account for signals generated due to confounding and a cox regression with elastic net regularisation correctly ranking the drug families known to be true adverse drug reactions above those that are not. This was not the case without the inclusion of the candidate confounding interaction terms, where confounding leads to a non-adverse drug reaction being ranked highest. Conclusions: The methodology is efficient, can identify high-order confounding interactions and does not require expert input to specify outcome specific confounders, so it can be applied for any outcome of interest to quickly refine its signals. The proposed method shows excellent potential to overcome some forms of confounding and therefore reduce the false positive rate for signal analysis using longitudinal data

    Good Signal Detection Practices: Evidence from IMI PROTECT

    Get PDF

    Data Mining Techniques in Pharmacovigilance: Analysis of the Publicly Accessible FDA Adverse Event Reporting System (AERS)

    Get PDF
    Pharmacovigilance is a clinically oriented discipline, which may guide appropriate drug use through a balanced assessment of drug safety. Although much has been done in recent years, efforts are needed to expand the border of pharmacovigilance. We have provided insight into the FDA_Adverse Events Reporting Systems (FDA_AERS), a worldwide publicly available pharmacovigilance archive, to exemplify how to address major methodological issues. We believe that fostering discussion among researchers will increase transparency and facilitate definition of the most reliable approaches. By virtue of its large population coverage and free availability, the FDA_AERS has the potential to pave the way to a new way of looking to signal detection in PhV. Our key messages are: (1) before applying statistical tools (i.e., Data Mining Approaches - DMAs) to pharmacovigilance database for signal detection, all aspects related to data quality should be considered (e.g., drug mapping, missing data and duplicates); (2) at present, the choice of a given DMA mostly relies on local habits, expertise and attitude and there is room for improvement in this area; (3) DMA performance may be highly situation dependent; (4) over-reliance on these methods may have deleterious consequences, especially with the so-called "designated medical events", for which a case-by-case analysis is mandatory and complements disproportionality; and (5) the most appropriate selection of pharmacovigilance tools needs to be tailored to each situation, being mindful of the numerous biases and confounders that may influence performance and incremental utility of DMAs

    A supervised adverse drug reaction signalling framework imitating Bradford Hill’s causality considerations

    Get PDF
    Big longitudinal observational medical data potentially hold a wealth of information and have been recognised as potential sources for gaining new drug safety knowledge. Unfortunately there are many complexities and underlying issues when analysing longitudinal observational data. Due to these complexities, existing methods for large-scale detection of negative side effects using observational data all tend to have issues distinguishing between association and causality. New methods that can better discriminate causal and non-causal relationships need to be developed to fully utilise the data. In this paper we propose using a set of causality considerations developed by the epidemiologist Bradford Hill as a basis for engineering features that enable the application of supervised learning for the problem of detecting negative side effects. The Bradford Hill considerations look at various perspectives of a drug and outcome relationship to determine whether it shows causal traits. We taught a classifier to find patterns within these perspectives and it learned to discriminate between association and causality. The novelty of this research is the combination of supervised learning and Bradford Hill’s causality considerations to automate the Bradford Hill’s causality assessment. We evaluated the framework on a drug safety gold standard known as the observational medical outcomes partnership’s non-specified association reference set. The methodology obtained excellent discrimination ability with area under the curves ranging between 0.792 and 0.940 (existing method optimal: 0.73) and a mean average precision of 0.640 (existing method optimal: 0.141). The proposed features can be calculated efficiently and be readily updated, making the framework suitable for big observational data

    Signalling paediatric side effects using an ensemble of simple study designs

    Get PDF
    Background: Children are frequently prescribed medication `o-label', meaning there has not been sucient testing of the medication to determine its safety or eectiveness. The main reason this safety knowledge is lacking is due to ethical restrictions that prevent children from being included in the majority of clinical trials. Methods: Multiple measures of association are calculated for each drug and medical event pair and these are used as features that are fed into a classifier to determine the likelihood of the drug and medical event pair corresponding to an adverse drug reaction. The classier is trained using known adverse drug reactions or known non-adverse drug reaction relationships. Results: The novel ensemble framework obtained a false positive rate of 0:149, a sensitivity of 0:547 and a specificity of 0:851 when implemented on a reference set of drug and medical event pairs. The novel framework consistently outperformed each individual simple study design. Conclusion: This research shows that it is possible to exploit the mechanism of causality and presents a framework for signalling adverse drug reactions eectively

    Conceptual graph-based knowledge representation for supporting reasoning in African traditional medicine

    Get PDF
    Although African patients use both conventional or modern and traditional healthcare simultaneously, it has been proven that 80% of people rely on African traditional medicine (ATM). ATM includes medical activities stemming from practices, customs and traditions which were integral to the distinctive African cultures. It is based mainly on the oral transfer of knowledge, with the risk of losing critical knowledge. Moreover, practices differ according to the regions and the availability of medicinal plants. Therefore, it is necessary to compile tacit, disseminated and complex knowledge from various Tradi-Practitioners (TP) in order to determine interesting patterns for treating a given disease. Knowledge engineering methods for traditional medicine are useful to model suitably complex information needs, formalize knowledge of domain experts and highlight the effective practices for their integration to conventional medicine. The work described in this paper presents an approach which addresses two issues. First it aims at proposing a formal representation model of ATM knowledge and practices to facilitate their sharing and reusing. Then, it aims at providing a visual reasoning mechanism for selecting best available procedures and medicinal plants to treat diseases. The approach is based on the use of the Delphi method for capturing knowledge from various experts which necessitate reaching a consensus. Conceptual graph formalism is used to model ATM knowledge with visual reasoning capabilities and processes. The nested conceptual graphs are used to visually express the semantic meaning of Computational Tree Logic (CTL) constructs that are useful for formal specification of temporal properties of ATM domain knowledge. Our approach presents the advantage of mitigating knowledge loss with conceptual development assistance to improve the quality of ATM care (medical diagnosis and therapeutics), but also patient safety (drug monitoring)

    Run-time risk management in adaptive ICT systems

    No full text
    We will present results of the SERSCIS project related to risk management and mitigation strategies in adaptive multi-stakeholder ICT systems. The SERSCIS approach involves using semantic threat models to support automated design-time threat identification and mitigation analysis. The focus of this paper is the use of these models at run-time for automated threat detection and diagnosis. This is based on a combination of semantic reasoning and Bayesian inference applied to run-time system monitoring data. The resulting dynamic risk management approach is compared to a conventional ISO 27000 type approach, and validation test results presented from an Airport Collaborative Decision Making (A-CDM) scenario involving data exchange between multiple airport service providers
    • …
    corecore