21,699 research outputs found

    Adaptive Scatter Search to Solve the Minimum Connected Dominating Set Problem for Efficient Management of Wireless Networks

    Get PDF
    An efficient routing using a virtual backbone (VB) network is one of the most significant improvements in the wireless sensor network (WSN). One promising method for selecting this subset of network nodes is by finding the minimum connected dominating set (MCDS), where the searching space for finding a route is restricted to nodes in this MCDS. Thus, finding MCDS in a WSN provides a flexible low-cost solution for the problem of event monitoring, particularly in places with limited or dangerous access to humans as is the case for most WSN deployments. In this paper, we proposed an adaptive scatter search (ASS-MCDS) algorithm that finds the near-optimal solution to this problem. The proposed method invokes a composite fitness function that aims to maximize the solution coverness and connectivity and minimize its cardinality. Moreover, the ASS-MCDS methods modified the scatter search framework through new local search and solution update procedures that maintain the search objectives. We tested the performance of our proposed algorithm using different benchmark-test-graph sets available in the literature. Experiments results show that our proposed algorithm gave good results in terms of solution quality

    Virtual Backbone Configuration in Wireless Mesh Networks

    Get PDF
    This paper introduces methods for the minimisation of virtual backbone size in wireless mesh networks, subject to practical constraints. The methods are centralised, which limits their usage to static applications. Four algorithms are presented, one exact and three heuristic. The exact method guarantees to find an optimal solution but runs in exponential time. Of the three heuristics, one is shown to match the performance of the optimal algorithm for all problem instances tested. The problem is constrained to introduce potentially massive levels of redundancy into the network topology, making the designs survivable

    Benchmarking a wide spectrum of metaheuristic techniques for the radio network design problem

    Get PDF
    The radio network design (RND) is an NP-hard optimization problem which consists of the maximization of the coverage of a given area while minimizing the base station deployment. Solving RND problems efficiently is relevant to many fields of application and has a direct impact in the engineering, telecommunication, scientific, and industrial areas. Numerous works can be found in the literature dealing with the RND problem, although they all suffer from the same shortfall: a noncomparable efficiency. Therefore, the aim of this paper is twofold: first, to offer a reliable RND comparison base reference in order to cover a wide algorithmic spectrum, and, second, to offer a comprehensible insight into accurate comparisons of efficiency, reliability, and swiftness of the different techniques applied to solve the RND problem. In order to achieve the first aim we propose a canonical RND problem formulation driven by two main directives: technology independence and a normalized comparison criterion. Following this, we have included an exhaustive behavior comparison between 14 different techniques. Finally, this paper indicates algorithmic trends and different patterns that can be observed through this analysis.Publicad

    The Weighted Independent Domination Problem: ILP Model and Algorithmic Approaches

    Get PDF
    This work deals with the so-called weighted independent domination problem, which is an NPNP-hard combinatorial optimization problem in graphs. In contrast to previous work, this paper considers the problem from a non-theoretical perspective. The first contribution consists in the development of three integer linear programming models. Second, two greedy heuristics are proposed. Finally, the last contribution is a population-based iterated greedy metaheuristic which is applied in two different ways: (1) the metaheuristic is applied directly to each problem instance, and (2) the metaheuristic is applied at each iteration of a higher-level framework---known as construct, merge, solve \& adapt---to sub-instances of the tackled problem instances. The results of the considered algorithmic approaches show that integer linear programming approaches can only compete with the developed metaheuristics in the context of graphs with up to 100 nodes. When larger graphs are concerned, the application of the populated-based iterated greedy algorithm within the higher-level framework works generally best. The experimental evaluation considers graphs of different types, sizes, densities, and ways of generating the node and edge weights

    An Efficient Local Search for the Minimum Independent Dominating Set Problem

    Get PDF
    In the present paper, we propose an efficient local search for the minimum independent dominating set problem. We consider a local search that uses k-swap as the neighborhood operation. Given a feasible solution S, it is the operation of obtaining another feasible solution by dropping exactly k vertices from S and then by adding any number of vertices to it. We show that, when k=2, (resp., k=3 and a given solution is minimal with respect to 2-swap), we can find an improved solution in the neighborhood or conclude that no such solution exists in O(n Delta) (resp., O(n Delta^3)) time, where n denotes the number of vertices and Delta denotes the maximum degree. We develop a metaheuristic algorithm that repeats the proposed local search and the plateau search iteratively, where the plateau search examines solutions of the same size as the current solution that are obtainable by exchanging a solution vertex and a non-solution vertex. The algorithm is so effective that, among 80 DIMACS graphs, it updates the best-known solution size for five graphs and performs as well as existing methods for the remaining graphs
    • …
    corecore