97,059 research outputs found

    A path context model for computer security phenomena in potentially non-secure environments

    Get PDF
    D.Sc. (Computer Science)Please refer to full text to view abstrac

    Reflections on security options for the real-time transport protocol framework

    Get PDF
    The Real-time Transport Protocol (RTP) supports a range of video conferencing, telephony, and streaming video ap- plications, but offers few native security features. We discuss the problem of securing RTP, considering the range of applications. We outline why this makes RTP a difficult protocol to secure, and describe the approach we have recently proposed in the IETF to provide security for RTP applications. This approach treats RTP as a framework with a set of extensible security building blocks, and prescribes mandatory-to-implement security at the level of different application classes, rather than at the level of the media transport protocol

    SGXIO: Generic Trusted I/O Path for Intel SGX

    Full text link
    Application security traditionally strongly relies upon security of the underlying operating system. However, operating systems often fall victim to software attacks, compromising security of applications as well. To overcome this dependency, Intel introduced SGX, which allows to protect application code against a subverted or malicious OS by running it in a hardware-protected enclave. However, SGX lacks support for generic trusted I/O paths to protect user input and output between enclaves and I/O devices. This work presents SGXIO, a generic trusted path architecture for SGX, allowing user applications to run securely on top of an untrusted OS, while at the same time supporting trusted paths to generic I/O devices. To achieve this, SGXIO combines the benefits of SGX's easy programming model with traditional hypervisor-based trusted path architectures. Moreover, SGXIO can tweak insecure debug enclaves to behave like secure production enclaves. SGXIO surpasses traditional use cases in cloud computing and makes SGX technology usable for protecting user-centric, local applications against kernel-level keyloggers and likewise. It is compatible to unmodified operating systems and works on a modern commodity notebook out of the box. Hence, SGXIO is particularly promising for the broad x86 community to which SGX is readily available.Comment: To appear in CODASPY'1

    Management and Service-aware Networking Architectures (MANA) for Future Internet Position Paper: System Functions, Capabilities and Requirements

    Get PDF
    Future Internet (FI) research and development threads have recently been gaining momentum all over the world and as such the international race to create a new generation Internet is in full swing: GENI, Asia Future Internet, Future Internet Forum Korea, European Union Future Internet Assembly (FIA). This is a position paper identifying the research orientation with a time horizon of 10 years, together with the key challenges for the capabilities in the Management and Service-aware Networking Architectures (MANA) part of the Future Internet (FI) allowing for parallel and federated Internet(s)

    Security Evaluation of Support Vector Machines in Adversarial Environments

    Full text link
    Support Vector Machines (SVMs) are among the most popular classification techniques adopted in security applications like malware detection, intrusion detection, and spam filtering. However, if SVMs are to be incorporated in real-world security systems, they must be able to cope with attack patterns that can either mislead the learning algorithm (poisoning), evade detection (evasion), or gain information about their internal parameters (privacy breaches). The main contributions of this chapter are twofold. First, we introduce a formal general framework for the empirical evaluation of the security of machine-learning systems. Second, according to our framework, we demonstrate the feasibility of evasion, poisoning and privacy attacks against SVMs in real-world security problems. For each attack technique, we evaluate its impact and discuss whether (and how) it can be countered through an adversary-aware design of SVMs. Our experiments are easily reproducible thanks to open-source code that we have made available, together with all the employed datasets, on a public repository.Comment: 47 pages, 9 figures; chapter accepted into book 'Support Vector Machine Applications

    IPv6 Network Mobility

    Get PDF
    Network Authentication, Authorization, and Accounting has been used since before the days of the Internet as we know it today. Authentication asks the question, “Who or what are you?” Authorization asks, “What are you allowed to do?” And fi nally, accounting wants to know, “What did you do?” These fundamental security building blocks are being used in expanded ways today. The fi rst part of this two-part series focused on the overall concepts of AAA, the elements involved in AAA communications, and highlevel approaches to achieving specifi c AAA goals. It was published in IPJ Volume 10, No. 1[0]. This second part of the series discusses the protocols involved, specifi c applications of AAA, and considerations for the future of AAA

    ‘Top 4’ strategies to mitigate targeted cyber intrusions: mandatory requirement explained

    Get PDF
    Introduction The Top 4 Strategies to Mitigate Targeted Cyber Intrusions (the Strategies) are the most effective security controls an organisation can implement at this point in time based on the our current visibility of the cyber threat environment. The Australian Signals Directorate (ASD), also known as the Defence Signals Directorate (DSD), assesses that implementing the Top 4 will mitigate at least 85% of the intrusion techniques that the Cyber Security Operations Centre (CSOC) responds to. For this reason, the Attorney‐General\u27s Department has updated the Australian Government Protective Security Policy Framework (PSPF) to require Australian government agencies to implement ICT protective security controls as detailed in the Australian Government Information Security Manual (ISM) to meet ASD\u27s Top 4 Strategies. Document scope This document provides specific implementation information on the Top 4 Strategies, including: information on the scope of and steps to manage the mandatory requirement; and some technical guidance for IT system administrators to planning and implementing the Top 4 Strategies in a typical Windows environment. This document focusses on implementing the Top 4 in a Windows environment, as the majority of government business is currently conducted using Windows operating systems. For agencies seeking implementation advice for systems that use other operating environments, ASD recommends seeking advice from your agency systems integrator or vendor in the first instance. Additionally, ASD recommends conducting research using open source publications, forums and resources available on the operating system and how each of the Top 4 could be implemented. If your agency finds it is not possible or feasible to implement the Top 4 in a non‐windows environment, you should follow appropriate risk‐management practices as outlined in the ISM
    • 

    corecore