66 research outputs found

    Real-time motion planning methods for autonomous on-road driving: state-of-the-art and future research directions

    Get PDF
    Currently autonomous or self-driving vehicles are at the heart of academia and industry research because of its multi-faceted advantages that includes improved safety, reduced congestion, lower emissions and greater mobility. Software is the key driving factor underpinning autonomy within which planning algorithms that are responsible for mission-critical decision making hold a significant position. While transporting passengers or goods from a given origin to a given destination, motion planning methods incorporate searching for a path to follow, avoiding obstacles and generating the best trajectory that ensures safety, comfort and efficiency. A range of different planning approaches have been proposed in the literature. The purpose of this paper is to review existing approaches and then compare and contrast different methods employed for the motion planning of autonomous on-road driving that consists of (1) finding a path, (2) searching for the safest manoeuvre and (3) determining the most feasible trajectory. Methods developed by researchers in each of these three levels exhibit varying levels of complexity and performance accuracy. This paper presents a critical evaluation of each of these methods, in terms of their advantages/disadvantages, inherent limitations, feasibility, optimality, handling of obstacles and testing operational environments. Based on a critical review of existing methods, research challenges to address current limitations are identified and future research directions are suggested so as to enhance the performance of planning algorithms at all three levels. Some promising areas of future focus have been identified as the use of vehicular communications (V2V and V2I) and the incorporation of transport engineering aspects in order to improve the look-ahead horizon of current sensing technologies that are essential for planning with the aim of reducing the total cost of driverless vehicles. This critical review on planning techniques presented in this paper, along with the associated discussions on their constraints and limitations, seek to assist researchers in accelerating development in the emerging field of autonomous vehicle research

    Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions

    Get PDF
    Open access articleCurrently autonomous or self-driving vehicles are at the heart of academia and industry research because of its multi-faceted advantages that includes improved safety, reduced congestion,lower emissions and greater mobility. Software is the key driving factor underpinning autonomy within which planning algorithms that are responsible for mission-critical decision making hold a significant position. While transporting passengers or goods from a given origin to a given destination, motion planning methods incorporate searching for a path to follow, avoiding obstacles and generating the best trajectory that ensures safety, comfort and efficiency. A range of different planning approaches have been proposed in the literature. The purpose of this paper is to review existing approaches and then compare and contrast different methods employed for the motion planning of autonomous on-road driving that consists of (1) finding a path, (2) searching for the safest manoeuvre and (3) determining the most feasible trajectory. Methods developed by researchers in each of these three levels exhibit varying levels of complexity and performance accuracy. This paper presents a critical evaluation of each of these methods, in terms of their advantages/disadvantages, inherent limitations, feasibility, optimality, handling of obstacles and testing operational environments. Based on a critical review of existing methods, research challenges to address current limitations are identified and future research directions are suggested so as to enhance the performance of planning algorithms at all three levels. Some promising areas of future focus have been identified as the use of vehicular communications (V2V and V2I) and the incorporation of transport engineering aspects in order to improve the look-ahead horizon of current sensing technologies that are essential for planning with the aim of reducing the total cost of driverless vehicles. This critical review on planning techniques presented in this paper, along with the associated discussions on their constraints and limitations, seek to assist researchers in accelerating development in the emerging field of autonomous vehicle research

    Trajectory generation for lane-change maneuver of autonomous vehicles

    Get PDF
    Lane-change maneuver is one of the most thoroughly investigated automatic driving operations that can be used by an autonomous self-driving vehicle as a primitive for performing more complex operations like merging, entering/exiting highways or overtaking another vehicle. This thesis focuses on two coherent problems that are associated with the trajectory generation for lane-change maneuvers of autonomous vehicles in a highway scenario: (i) an effective velocity estimation of neighboring vehicles under different road scenarios involving linear and curvilinear motion of the vehicles, and (ii) trajectory generation based on the estimated velocities of neighboring vehicles for safe operation of self-driving cars during lane-change maneuvers. ^ We first propose a two-stage, interactive-multiple-model-based estimator to perform multi-target tracking of neighboring vehicles in a lane-changing scenario. The first stage deals with an adaptive window based turn-rate estimation for tracking maneuvering target vehicles using Kalman filter. In the second stage, variable-structure models with updated estimated turn-rate are utilized to perform data association followed by velocity estimation. Based on the estimated velocities of neighboring vehicles, piecewise Bezier-curve-based methods that minimize the safety/collision risk involved and maximize the comfort ride have been developed for the generation of desired trajectory for lane-change maneuvers. The proposed velocity-estimation and trajectory-generation algorithms have been validated experimentally using Pioneer3- DX mobile robots in a simulated lane-change environment as well as validated by computer simulations

    Motion planning and control of redundant manipulators for dynamical obstacle avoidance

    Get PDF
    none2noThis paper presents a framework for the motion planning and control of redundant manipulators with the added task of collision avoidance. The algorithms that were previously studied and tested by the authors for planar cases are here extended to full mobility redundant manipulators operating in a three-dimensional workspace. The control strategy consists of a combination of off-line path planning algorithms with on-line motion control. The path planning algorithm is used to generate trajectories able to avoid fixed obstacles detected before the robot starts to move; this is based on the potential fields method combined with a smoothing interpolation that exploits Bézier curves. The on-line motion control is designed to compensate for the motion of the obstacles and to avoid collisions along the kinematic chain of the manipulator; this is realized using a velocity control law based on the null space method for redundancy control. Furthermore, an additional term of the control law is introduced which takes into account the speed of the obstacles, as well as their position. In order to test the algorithms, a set of simulations are presented: The redundant collaborative robot KUKA LBR iiwa is controlled in different cases, where fixed or dynamic obstacles interfere with its motion. The simulated data show that the proposed method for the smoothing of the trajectory can give a reduction of the angular accelerations of the motors of the order of 90%, with an increase of less than 15% of the calculation time. Furthermore, the dependence of the on-line control law on the speed of the obstacle can lead to reductions in the maximum speed and acceleration of the joints of approximately 50% and 80%, respectively, without significantly increasing the computational effort that is compatible for transferability to a real system.openPalmieri G.; Scoccia C.Palmieri, G.; Scoccia, C

    Sistemas de suporte à condução autónoma adequados a plataforma robótica 4-wheel skid-steer: percepção, movimento e simulação

    Get PDF
    As competições de robótica móvel desempenham papel preponderante na difusão da ciência e da engenharia ao público em geral. E também um espaço dedicado ao ensaio e comparação de diferentes estratégias e abordagens aos diversos desafios da robótica móvel. Uma das vertentes que tem reunido maior interesse nos promotores deste género de iniciativas e entre o público em geral são as competições de condução autónoma. Tipicamente as Competi¸c˜oes de Condução Autónoma (CCA) tentam reproduzir um ambiente semelhante a uma estrutura rodoviária tradicional, no qual sistemas autónomos deverão dar resposta a um conjunto variado de desafios que vão desde a deteção da faixa de rodagem `a interação com distintos elementos que compõem uma estrutura rodoviária típica, do planeamento trajetórias à localização. O objectivo desta dissertação de mestrado visa documentar o processo de desenho e concepção de uma plataforma robótica móvel do tipo 4-wheel skid-steer para realização de tarefas de condução autónoma em ambiente estruturado numa pista que pretende replicar uma via de circulação automóvel dotada de sinalética básica e alguns obstáculos. Paralelamente, a dissertação pretende também fazer uma análise qualitativa entre o processo de simulação e a sua transposição para uma plataforma robótica física. inferir sobre a diferenças de performance e de comportamento.Mobile robotics competitions play an important role in the diffusion of science and engineering to the general public. It is also a space dedicated to test and compare different strategies and approaches to several challenges of mobile robotics. One of the aspects that has attracted more the interest of promoters for this kind of initiatives and general public is the autonomous driving competitions. Typically, Autonomous Driving Competitions (CCAs) attempt to replicate an environment similar to a traditional road structure, in which autonomous systems should respond to a wide variety of challenges ranging from lane detection to interaction with distinct elements that exist in a typical road structure, from planning trajectories to location. The aim of this master’s thesis is to document the process of designing and endow a 4-wheel skid-steer mobile robotic platform to carry out autonomous driving tasks in a structured environment on a track that intends to replicate a motorized roadway including signs and obstacles. In parallel, the dissertation also intends to make a qualitative analysis between the simulation process and the transposition of the developed algorithm to a physical robotic platform, analysing the differences in performance and behavior

    Human-like motorway lane change trajectory planning for autonomous vehicles.

    Get PDF
    The human lifestyle can be foreseen to have a tremendous change once the automation of transportation has been fully realised. The majority of current researches merely focus on improving the efficiency performance of autonomous vehicles(e.g. the energy management system, the handling, etc.)instead of putting the human acceptance and preference into consideration, leaving the knowledge gap of achieving the personalised automation. The primary objective of this research is to develop a novel human-like trajectory planning algorithm that is able to mimic the performance of human drivers and generate a feasible trajectory for an autonomous vehicle to complete a motorway lane change, which is the most representative and commonest manoeuvre on the motorway. This thesis can be divided into four main sections. Starting with the part of literature review, which summarises the existing techniques and the associated knowledges that can be taken the advantage of; including the trajectory planning, the driving styles, the lane change manoeuvre and the Model Predictive Control (MPC). An appropriate-designed experiment is then introduced and implemented, with the purpose of constructing a precise and reliable human driving database. This database contains 551 lane changes on the motorway from 12 different male drivers. Through applying data statistics methods, the human characteristics can be mined from the experimental data, showing that the vehicle velocity , the hand steering wheel angle , the longitudinal acceleration a, the rate of hand steering and the rate of longitudinal accelerating are the essential features for the motorway lane change manoeuvre. An off-line constraint table for the three nominated driving styles can be therefore constructed based on these features. Finally, the obtained human information is then fused with the traditional MPC planning technique so as to achieve the proposed human-like trajectory planning algorithm. The main contribution of this study is proposing a novel approach of combining the real human driving data and the traditional planning technique(i.e. MPC) to achieve human-like lane change trajectory planning for autonomous vehicles. An integrated human driving database which contains both the video footages and the vehicle-dynamic-based signals from 12 different participants is built. Moreover, the draft marginal values of the essential parameters for the driving styles while performing a right lane change on the motorway are also presented. Both the collected driving database and the driving styles’ constraint table can be seen as distinctive achievements, providing resourceful materials for future researches.PhD in Transport System

    MODELING OF BOND YIELD CURVE USING CUBIC BEZIER CURVE

    Get PDF
    Investors attracted to Bond have to analyze the Bond yield curve. In this study, the bond yield curve is modeled using a cubic bezier curve. The cubic bezier curve is flexible, precise, and simple to use and evaluate. The bonds used in this study are Surat Berharga Negara (Government Paper) Fix Rate type dated August, 2nd–6th 2021. Bond data is obtained from the Indonesia Stock Exchange https://www.idx.co.id. The results show that the bond yield curve that is formed varies because bond yields change every time following market developments. The cubic bezier curve is able to model the bond yield curve well. Cubic bezier curves have 4 control values ​​that help guide the curve well. The MSE value obtained by the bezier curve is small in general. The MSE values of the cubic bezier curve for the Bond yield data, sequentially from the least to the greatest, are 0,098 on August 4th, 2021; 0,1719 on August 5th, 2021; 0,2161 on August 3rd, 2021; 0,2498 on August 6th, 2021; and 0,2906 on August 2nd, 2021

    Feasible, Robust and Reliable Automation and Control for Autonomous Systems

    Get PDF
    The Special Issue book focuses on highlighting current research and developments in the automation and control field for autonomous systems as well as showcasing state-of-the-art control strategy approaches for autonomous platforms. The book is co-edited by distinguished international control system experts currently based in Sweden, the United States of America, and the United Kingdom, with contributions from reputable researchers from China, Austria, France, the United States of America, Poland, and Hungary, among many others. The editors believe the ten articles published within this Special Issue will be highly appealing to control-systems-related researchers in applications typified in the fields of ground, aerial, maritime vehicles, and robotics as well as industrial audiences
    corecore