175 research outputs found

    A hierarchy of randomness for graphs

    Get PDF
    AbstractIn this paper we formulate four families of problems with which we aim at distinguishing different levels of randomness.The first one is completely non-random, being the ordinary Ramsey–Turán problem and in the subsequent three problems we formulate some randomized variations of it. As we will show, these four levels form a hierarchy. In a continuation of this paper we shall prove some further theorems and discuss some further, related problems

    Beyond graph energy: norms of graphs and matrices

    Full text link
    In 1978 Gutman introduced the energy of a graph as the sum of the absolute values of graph eigenvalues, and ever since then graph energy has been intensively studied. Since graph energy is the trace norm of the adjacency matrix, matrix norms provide a natural background for its study. Thus, this paper surveys research on matrix norms that aims to expand and advance the study of graph energy. The focus is exclusively on the Ky Fan and the Schatten norms, both generalizing and enriching the trace norm. As it turns out, the study of extremal properties of these norms leads to numerous analytic problems with deep roots in combinatorics. The survey brings to the fore the exceptional role of Hadamard matrices, conference matrices, and conference graphs in matrix norms. In addition, a vast new matrix class is studied, a relaxation of symmetric Hadamard matrices. The survey presents solutions to just a fraction of a larger body of similar problems bonding analysis to combinatorics. Thus, open problems and questions are raised to outline topics for further investigation.Comment: 54 pages. V2 fixes many typos, and gives some new materia

    Supersaturation Problem for Color-Critical Graphs

    Get PDF
    The \emph{Tur\'an function} \ex(n,F) of a graph FF is the maximum number of edges in an FF-free graph with nn vertices. The classical results of Tur\'an and Rademacher from 1941 led to the study of supersaturated graphs where the key question is to determine hF(n,q)h_F(n,q), the minimum number of copies of FF that a graph with nn vertices and \ex(n,F)+q edges can have. We determine hF(n,q)h_F(n,q) asymptotically when FF is \emph{color-critical} (that is, FF contains an edge whose deletion reduces its chromatic number) and q=o(n2)q=o(n^2). Determining the exact value of hF(n,q)h_F(n,q) seems rather difficult. For example, let c1c_1 be the limit superior of q/nq/n for which the extremal structures are obtained by adding some qq edges to a maximum FF-free graph. The problem of determining c1c_1 for cliques was a well-known question of Erd\H os that was solved only decades later by Lov\'asz and Simonovits. Here we prove that c1>0c_1>0 for every {color-critical}~FF. Our approach also allows us to determine c1c_1 for a number of graphs, including odd cycles, cliques with one edge removed, and complete bipartite graphs plus an edge.Comment: 27 pages, 2 figure

    On some interconnections between combinatorial optimization and extremal graph theory

    Get PDF
    The uniting feature of combinatorial optimization and extremal graph theory is that in both areas one should find extrema of a function defined in most cases on a finite set. While in combinatorial optimization the point is in developing efficient algorithms and heuristics for solving specified types of problems, the extremal graph theory deals with finding bounds for various graph invariants under some constraints and with constructing extremal graphs. We analyze by examples some interconnections and interactions of the two theories and propose some conclusions

    A collection of open problems in celebration of Imre Leader's 60th birthday

    Full text link
    One of the great pleasures of working with Imre Leader is to experience his infectious delight on encountering a compelling combinatorial problem. This collection of open problems in combinatorics has been put together by a subset of his former PhD students and students-of-students for the occasion of his 60th birthday. All of the contributors have been influenced (directly or indirectly) by Imre: his personality, enthusiasm and his approach to mathematics. The problems included cover many of the areas of combinatorial mathematics that Imre is most associated with: including extremal problems on graphs, set systems and permutations, and Ramsey theory. This is a personal selection of problems which we find intriguing and deserving of being better known. It is not intended to be systematic, or to consist of the most significant or difficult questions in any area. Rather, our main aim is to celebrate Imre and his mathematics and to hope that these problems will make him smile. We also hope this collection will be a useful resource for researchers in combinatorics and will stimulate some enjoyable collaborations and beautiful mathematics

    VC Density of Set Systems Definable in Tree-Like Graphs

    Get PDF
    We study set systems definable in graphs using variants of logic with different expressive power. Our focus is on the notion of Vapnik-Chervonenkis density: the smallest possible degree of a polynomial bounding the cardinalities of restrictions of such set systems. On one hand, we prove that if phi(x,y) is a fixed CMSO_1 formula and C is a class of graphs with uniformly bounded cliquewidth, then the set systems defined by phi in graphs from C have VC density at most |y|, which is the smallest bound that one could expect. We also show an analogous statement for the case when phi(x,y) is a CMSO_2 formula and C is a class of graphs with uniformly bounded treewidth. We complement these results by showing that if C has unbounded cliquewidth (respectively, treewidth), then, under some mild technical assumptions on C, the set systems definable by CMSO_1 (respectively, CMSO_2) formulas in graphs from C may have unbounded VC dimension, hence also unbounded VC density

    Extremal Combinatorics, Iterated Pigeonhole Arguments and Generalizations of PPP

    Get PDF

    The codegree threshold of K4K_4^-

    Get PDF
    The codegree threshold ex2(n,F)\mathrm{ex}_2(n, F) of a 33-graph FF is the minimum d=d(n)d=d(n) such that every 33-graph on nn vertices in which every pair of vertices is contained in at least d+1d+1 edges contains a copy of FF as a subgraph. We study ex2(n,F)\mathrm{ex}_2(n, F) when F=K4F=K_4^-, the 33-graph on 44 vertices with 33 edges. Using flag algebra techniques, we prove that if nn is sufficiently large then ex2(n,K4)(n+1)/4\mathrm{ex}_2(n, K_4^-)\leq (n+1)/4. This settles in the affirmative a conjecture of Nagle from 1999. In addition, we obtain a stability result: for every near-extremal configuration GG, there is a quasirandom tournament TT on the same vertex set such that GG is close in the edit distance to the 33-graph C(T)C(T) whose edges are the cyclically oriented triangles from TT. For infinitely many values of nn, we are further able to determine ex2(n,K4)\mathrm{ex}_2(n, K_4^-) exactly and to show that tournament-based constructions C(T)C(T) are extremal for those values of nn.Comment: 31 pages, 7 figures. Ancillary files to the submission contain the information needed to verify the flag algebra computation in Lemma 2.8. Expands on the 2017 conference paper of the same name by the same authors (Electronic Notes in Discrete Mathematics, Volume 61, pages 407-413
    corecore