52 research outputs found

    FACE CLASSIFICATION FOR AUTHENTICATION APPROACH BY USING WAVELET TRANSFORM AND STATISTICAL FEATURES SELECTION

    Get PDF
    This thesis consists of three parts: face localization, features selection and classification process. Three methods were proposed to locate the face region in the input image. Two of them based on pattern (template) Matching Approach, and the other based on clustering approach. Five datasets of faces namely: YALE database, MIT-CBCL database, Indian database, BioID database and Caltech database were used to evaluate the proposed methods. For the first method, the template image is prepared previously by using a set of faces. Later, the input image is enhanced by applying n-means kernel to decrease the image noise. Then Normalized Correlation (NC) is used to measure the correlation coefficients between the template image and the input image regions. For the second method, instead of using n-means kernel, an optimized metrics are used to measure the difference between the template image and the input image regions. In the last method, the Modified K-Means Algorithm was used to remove the non-face regions in the input image. The above-mentioned three methods showed accuracy of localization between 98% and 100% comparing with the existed methods. In the second part of the thesis, Discrete Wavelet Transform (DWT) utilized to transform the input image into number of wavelet coefficients. Then, the coefficients of weak statistical energy less than certain threshold were removed, and resulted in decreasing the primary wavelet coefficients number up to 98% out of the total coefficients. Later, only 40% statistical features were extracted from the hight energy features by using the variance modified metric. During the experimental (ORL) Dataset was used to test the proposed statistical method. Finally, Cluster-K-Nearest Neighbor (C-K-NN) was proposed to classify the input face based on the training faces images. The results showed a significant improvement of 99.39% in the ORL dataset and 100% in the Face94 dataset classification accuracy. Moreover, a new metrics were introduced to quantify the exactness of classification and some errors of the classification can be corrected. All the above experiments were implemented in MATLAB environment

    FACE CLASSIFICATION FOR AUTHENTICATION APPROACH BY USING WAVELET TRANSFORM AND STATISTICAL FEATURES SELECTION

    Get PDF
    This thesis consists of three parts: face localization, features selection and classification process. Three methods were proposed to locate the face region in the input image. Two of them based on pattern (template) Matching Approach, and the other based on clustering approach. Five datasets of faces namely: YALE database, MIT-CBCL database, Indian database, BioID database and Caltech database were used to evaluate the proposed methods. For the first method, the template image is prepared previously by using a set of faces. Later, the input image is enhanced by applying n-means kernel to decrease the image noise. Then Normalized Correlation (NC) is used to measure the correlation coefficients between the template image and the input image regions. For the second method, instead of using n-means kernel, an optimized metrics are used to measure the difference between the template image and the input image regions. In the last method, the Modified K-Means Algorithm was used to remove the non-face regions in the input image. The above-mentioned three methods showed accuracy of localization between 98% and 100% comparing with the existed methods. In the second part of the thesis, Discrete Wavelet Transform (DWT) utilized to transform the input image into number of wavelet coefficients. Then, the coefficients of weak statistical energy less than certain threshold were removed, and resulted in decreasing the primary wavelet coefficients number up to 98% out of the total coefficients. Later, only 40% statistical features were extracted from the hight energy features by using the variance modified metric. During the experimental (ORL) Dataset was used to test the proposed statistical method. Finally, Cluster-K-Nearest Neighbor (C-K-NN) was proposed to classify the input face based on the training faces images. The results showed a significant improvement of 99.39% in the ORL dataset and 100% in the Face94 dataset classification accuracy. Moreover, a new metrics were introduced to quantify the exactness of classification and some errors of the classification can be corrected. All the above experiments were implemented in MATLAB environment

    Automatic Signature Verification: The State of the Art

    Full text link

    Automatic speaker recognition: modelling, feature extraction and effects of clinical environment

    Get PDF
    Speaker recognition is the task of establishing identity of an individual based on his/her voice. It has a significant potential as a convenient biometric method for telephony applications and does not require sophisticated or dedicated hardware. The Speaker Recognition task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker-specific feature parameters from the speech. The features are used to generate statistical models of different speakers. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Current state of the art speaker recognition systems use the Gaussian mixture model (GMM) technique in combination with the Expectation Maximization (EM) algorithm to build the speaker models. The most frequently used features are the Mel Frequency Cepstral Coefficients (MFCC). This thesis investigated areas of possible improvements in the field of speaker recognition. The identified drawbacks of the current speaker recognition systems included: slow convergence rates of the modelling techniques and feature’s sensitivity to changes due aging of speakers, use of alcohol and drugs, changing health conditions and mental state. The thesis proposed a new method of deriving the Gaussian mixture model (GMM) parameters called the EM-ITVQ algorithm. The EM-ITVQ showed a significant improvement of the equal error rates and higher convergence rates when compared to the classical GMM based on the expectation maximization (EM) method. It was demonstrated that features based on the nonlinear model of speech production (TEO based features) provided better performance compare to the conventional MFCCs features. For the first time the effect of clinical depression on the speaker verification rates was tested. It was demonstrated that the speaker verification results deteriorate if the speakers are clinically depressed. The deterioration process was demonstrated using conventional (MFCC) features. The thesis also showed that when replacing the MFCC features with features based on the nonlinear model of speech production (TEO based features), the detrimental effect of the clinical depression on speaker verification rates can be reduced

    High Performance Techniques for Face Recognition

    Get PDF
    The identification of individuals using face recognition techniques is a challenging task. This is due to the variations resulting from facial expressions, makeup, rotations, illuminations, gestures, etc. Also, facial images contain a great deal of redundant information, which negatively affects the performance of the recognition system. The dimensionality and the redundancy of the facial features have a direct effect on the face recognition accuracy. Not all the features in the feature vector space are useful. For example, non-discriminating features in the feature vector space not only degrade the recognition accuracy but also increase the computational complexity. In the field of computer vision, pattern recognition, and image processing, face recognition has become a popular research topic. This is due to its wide spread applications in security and control, which allow the identified individual to access secure areas, personal information, etc. The performance of any recognition system depends on three factors: 1) the storage requirements, 2) the computational complexity, and 3) the recognition rates. Two different recognition system families are presented and developed in this dissertation. Each family consists of several face recognition systems. Each system contains three main steps, namely, preprocessing, feature extraction, and classification. Several preprocessing steps, such as cropping, facial detection, dividing the facial image into sub-images, etc. are applied to the facial images. This reduces the effect of the irrelevant information (background) and improves the system performance. In this dissertation, either a Neural Network (NN) based classifier or Euclidean distance is used for classification purposes. Five widely used databases, namely, ORL, YALE, FERET, FEI, and LFW, each containing different facial variations, such as light condition, rotations, facial expressions, facial details, etc., are used to evaluate the proposed systems. The experimental results of the proposed systems are analyzed using K-folds Cross Validation (CV). In the family-1, Several systems are proposed for face recognition. Each system employs different integrated tools in the feature extraction step. These tools, Two Dimensional Discrete Multiwavelet Transform (2D DMWT), 2D Radon Transform (2D RT), 2D or 3D DWT, and Fast Independent Component Analysis (FastICA), are applied to the processed facial images to reduce the dimensionality and to obtain discriminating features. Each proposed system produces a unique representation, and achieves less storage requirements and better performance than the existing methods. For further facial compression, there are three face recognition systems in the second family. Each system uses different integrated tools to obtain better facial representation. The integrated tools, Vector Quantization (VQ), Discrete cosine Transform (DCT), and 2D DWT, are applied to the facial images for further facial compression and better facial representation. In the systems using the tools VQ/2D DCT and VQ/ 2D DWT, each pose in the databases is represented by one centroid with 4*4*16 dimensions. In the third system, VQ/ Facial Part Detection (FPD), each person in the databases is represented by four centroids with 4*Centroids (4*4*16) dimensions. The systems in the family-2 are proposed to further reduce the dimensions of the data compared to the systems in the family-1 while attaining comparable results. For example, in family-1, the integrated tools, FastICA/ 2D DMWT, applied to different combinations of sub-images in the FERET database with K-fold=5 (9 different poses used in the training mode), reduce the dimensions of the database by 97.22% and achieve 99% accuracy. In contrast, the integrated tools, VQ/ FPD, in the family-2 reduce the dimensions of the data by 99.31% and achieve 97.98% accuracy. In this example, the integrated tools, VQ/ FPD, accomplished further data compression and less accuracy compared to those reported by FastICA/ 2D DMWT tools. Various experiments and simulations using MATLAB are applied. The experimental results of both families confirm the improvements in the storage requirements, as well as the recognition rates as compared to some recently reported methods

    Adaptive multi-classifier systems for face re-identification applications

    Get PDF
    In video surveillance, decision support systems rely more and more on face recognition (FR) to rapidly determine if facial regions captured over a network of cameras correspond to individuals of interest. Systems for FR in video surveillance are applied in a range of scenarios, for instance in watchlist screening, face re-identification, and search and retrieval. The focus of this Thesis is video-to-video FR, as found in face re-identification applications, where facial models are designed on reference data, and update is archived on operational captures from video streams. Several challenges emerge from the task of recognizing individuals of interest from faces captured with video cameras. Most notably, it is often assumed that the facial appearance of target individuals do not change over time, and the proportions of faces captured for target and non-target individuals are balanced, known a priori and remain fixed. However, faces captured during operations vary due to several factors, including illumination, blur, resolution, pose expression, and camera interoperability. In addition, facial models used matching are commonly not representative since they are designed a priori, with a limited amount of reference samples that are collected and labeled at a high cost. Finally, the proportions of target and non-target individuals continuously change during operations. In literature, adaptive multiple classifier systems (MCSs) have been successfully applied to video-to-video FR, where the facial model for each target individual is designed using an ensemble of 2-class classifiers (trained using target vs. non-target reference samples). Recent approaches employ ensembles of 2-class Fuzzy ARTMAP classifiers, with a DPSO strategy to generate a pool of classifiers with optimized hyperparameters, and Boolean combination to merge their responses in the ROC space. Besides, the skew-sensitive ensembles were recently proposed to adapt the fusion function of an ensemble according to class imbalance measured on operational data. These active approaches estimate target vs. non-target proportions periodically during operations distance, and the fusion of classifier ensembles are adapted to such imbalance. Finally, face tracking can be used to regroup the system responses linked to a facial trajectory (facial captures from a single person in the scene) for robust spatio-temporal recognition, and to update facial models over time using operational data. In this Thesis, new techniques are proposed to adapt the facial models for individuals enrolled to a video-to-video FR system. Trajectory-based self-updating is proposed to update the system, considering gradual and abrupt changes in the classification environment. Then, skew-sensitive ensembles are proposed to adapt the system to the operational imbalance. In Chapter 2, an adaptive framework is proposed for partially-supervised learning of facial models over time based on facial trajectories. During operations, information from a face tracker and individual-specific ensembles is integrated for robust spatio-temporal recognition and for self-update of facial models. The tracker defines a facial trajectory for each individual in video. Recognition of a target individual is done if the positive predictions accumulated along a trajectory surpass a detection threshold for an ensemble. If the accumulated positive predictions surpass a higher update threshold, then all target face samples from the trajectory are combined with non-target samples (selected from the cohort and universal models) to update the corresponding facial model. A learn-and-combine strategy is employed to avoid knowledge corruption during self-update of ensembles. In addition, a memory management strategy based on Kullback-Leibler divergence is proposed to rank and select the most relevant target and non-target reference samples to be stored in memory as the ensembles evolves. The proposed system was validated with synthetic data and real videos from Face in Action dataset, emulating a passport checking scenario. Initially, enrollment trajectories were used for supervised learning of ensembles, and videos from three capture sessions were presented to the system for FR and self-update. Transaction-level analysis shows that the proposed approach outperforms baseline systems that do not adapt to new trajectories, and provides comparable performance to ideal systems that adapt to all relevant target trajectories, through supervised learning. Subject-level analysis reveals the existence of individuals for which self-updated ensembles provide a considerable benefit. Trajectory-level analysis indicates that the proposed system allows for robust spatio-temporal video-to-video FR. In Chapter 3, an extension and a particular implementation of the ensemble-based system for spatio-temporal FR is proposed, and is characterized in scenarios with gradual and abrupt changes in the classification environment. Transaction-level results show that the proposed system allows to increase AUC accuracy by about 3% in scenarios with abrupt changes, and by about 5% in scenarios with gradual changes. Subject-based analysis reveals the difficulties of FR with different poses, affecting more significantly the lamb- and goat-like individuals. Compared to reference spatio-temporal fusion approaches, the proposed accumulation scheme produces the highest discrimination. In Chapter 4, adaptive skew-sensitive ensembles are proposed to combine classifiers trained by selecting data with varying levels of imbalance and complexity, to sustain a high level the performance for video-to-video FR. During operations, the level of imbalance is periodically estimated from the input trajectories using the HDx quantification method, and pre-computed histogram representations of imbalanced data distributions. Ensemble scores are accumulated of trajectories for robust skew-sensitive spatio-temporal recognition. Results on synthetic data show that adapting the fusion function with the proposed approach can significantly improve performance. Results on real data show that the proposed method can outperform reference techniques in imbalanced video surveillance environments

    FedBiometric: Image Features Based Biometric Presentation Attack Detection Using Hybrid CNNs-SVM in Federated Learning

    Get PDF
    In the past few years, biometric identification systems have become popular for personal, national, and global security. In addition to other biometric modalities, facial and fingerprint recognition have gained popularity due to their uniqueness, stability, convenience, and cost-effectiveness compared to other biometric modalities. However, the evolution of fake biometrics, such as printed materials, 2D or 3D faces, makeup, and cosmetics, has brought new challenges. As a result of these modifications, several facial and fingerprint Presentation Attack Detection methods have been proposed to distinguish between live and spoof faces or fingerprints. Federated learning can play a significant role in this problem due to its distributed learning setting and privacy-preserving advantages. This work proposes a hybrid ResNet50-SVM based federated learning model for facial Presentation Attack Detection utilizing Local Binary Pattern (LBP), or Gabor filter-based extracted image features. For fingerprint Presentation Attack Detection (PAD), this work proposes a hybrid CNN-SVM based federated learning model utilizing Local Binary Pattern (LBP), or Histograms of Oriented Gradient (HOG)-based extracted image features

    FACIAL IDENTIFICATION FOR DIGITAL FORENSIC

    Get PDF
    Forensic facial recognition has become an essential requirement in criminal investigations as a result of the emergence of electronic devices, such as mobile phones and computers, and the huge volume of existing content. Forensic facial recognition goes beyond facial recognition in that it deals with facial images under unconstrained and non-ideal conditions, such as low image resolution, varying facial orientation, poor illumination, a wide range of facial expressions, and the presence of accessories. In addition, digital forensic challenges do not only concern identifying an individual but also include understanding the context, acknowledging the relationships between individuals, tracking, and numbers of advanced questions that help reduce the cognitive load placed on the investigator. This thesis proposes a multi-algorithmic fusion approach by using multiple commercial facial recognition systems to overcome particular weaknesses in singular approaches to obtain improved facial identification accuracy. The advantage of focusing on commercial systems is that they release the forensic team from developing and managing their own solutions and, subsequently, also benefit from state-of-the-art updates in underlying recognition performance. A set of experiments was conducted to evaluate these commercial facial recognition systems (Neurotechnology, Microsoft, and Amazon Rekognition) to determine their individual performance using facial images with varied conditions and to determine the benefits of fusion. Two challenging facial datasets were identified for the evaluation; they represent a challenging yet realistic set of digital forensics scenarios collected from publicly available photographs. The experimental results have proven that using the developed fusion approach achieves a better facial vi identification rate as the best evaluated commercial system has achieved an accuracy of 67.23% while the multi-algorithmic fusion system has achieved an accuracy of 71.6%. Building on these results, a novel architecture is proposed to support the forensic investigation concerning the automatic facial recognition called Facial-Forensic Analysis System (F-FAS). The F-FAS is an efficient design that analyses the content of photo evidence to identify a criminal individual. Further, the F-FAS architecture provides a wide range of capabilities that will allow investigators to perform in-depth analysis that can lead to a case solution. Also, it allows investigators to find answers about different questions, such as individual identification, and identify associations between artefacts (facial social network) and presents them in a usable and visual form (geolocation) to draw a wider picture of a crime. This tool has also been designed based on a case management concept that helps to manage the overall system and provide robust authentication, authorisation, and chain of custody. Several experts in the forensic area evaluated the contributions of theses and a novel approach idea and it was unanimously agreed that the selected research problem was one of great validity. In addition, all experts have demonstrated support for experiments’ results and they were impressed by the suggested F-FAS based on the context of its functions.Republic of Iraq / Ministry of Higher Education and Scientific Research – Baghdad Universit
    • …
    corecore