12 research outputs found

    Comparative Analysis of Techniques Used to Detect Copy-Move Tampering for Real-World Electronic Images

    Get PDF
    Evolution of high computational powerful computers, easy availability of several innovative editing software package and high-definition quality-based image capturing tools follows to effortless result in producing image forgery. Though, threats for security and misinterpretation of digital images and scenes have been observed to be happened since a long period and also a lot of research has been established in developing diverse techniques to authenticate the digital images. On the contrary, the research in this region is not limited to checking the validity of digital photos but also to exploring the specific signs of distortion or forgery. This analysis would not require additional prior information of intrinsic content of corresponding digital image or prior embedding of watermarks. In this paper, recent growth in the area of digital image tampering identification have been discussed along with benchmarking study has been shown with qualitative and quantitative results. With variety of methodologies and concepts, different applications of forgery detection have been discussed with corresponding outcomes especially using machine and deep learning methods in order to develop efficient automated forgery detection system. The future applications and development of advanced soft-computing based techniques in digital image forgery tampering has been discussed

    Comparative Analysis of Techniques Used to Detect Copy-Move Tampering for Real-World Electronic Images

    Get PDF
    Evolution of high computational powerful computers, easy availability of several innovative editing software package and high-definition quality-based image capturing tools follows to effortless result in producing image forgery. Though, threats for security and misinterpretation of digital images and scenes have been observed to be happened since a long period and also a lot of research has been established in developing diverse techniques to authenticate the digital images. On the contrary, the research in this region is not limited to checking the validity of digital photos but also to exploring the specific signs of distortion or forgery. This analysis would not require additional prior information of intrinsic content of corresponding digital image or prior embedding of watermarks. In this paper, recent growth in the area of digital image tampering identification have been discussed along with benchmarking study has been shown with qualitative and quantitative results. With variety of methodologies and concepts, different applications of forgery detection have been discussed with corresponding outcomes especially using machine and deep learning methods in order to develop efficient automated forgery detection system. The future applications and development of advanced soft-computing based techniques in digital image forgery tampering has been discussed

    Copy-move forgery detection using combined features and transitive matching

    Get PDF
    Recently, the research of Internet of Things (IoT) and Multimedia Big Data (MBD) has been growing tremendously. Both IoT and MBD have a lot of multimedia data, which can be tampered easily. Therefore, the research of multimedia forensics is necessary. Copy-move is an important branch of multimedia forensics. In this paper, a novel copy-move forgery detection scheme using combined features and transitive matching is proposed. First, SIFT and LIOP are extracted as combined features from the input image. Second, transitive matching is used to improve the matching relationship. Third, a filtering approach using image segmentation is proposed to filter out false matches. Fourth, affine transformations are estimated between these image patches. Finally, duplicated regions are located based on those affine transformations. The experimental results demonstrate that the proposed scheme can achieve much better detection results on the public database under various attacks

    Copy-move forgery detection in digital images

    Get PDF
    The ready availability of image-editing software makes it important to ensure the authenticity of images. This thesis concerns the detection and localization of cloning, or Copy-Move Forgery (CMF), which is the most common type of image tampering, in which part(s) of the image are copied and pasted back somewhere else in the same image. Post-processing can be used to produce more realistic doctored images and thus can increase the difficulty of detecting forgery. This thesis presents three novel methods for CMF detection, using feature extraction, surface fitting and segmentation. The Dense Scale Invariant Feature Transform (DSIFT) has been improved by using a different method to estimate the canonical orientation of each circular block. The Fitting Function Rotation Invariant Descriptor (FFRID) has been developed by using the least squares method to fit the parameters of a quadratic function on each block curvatures. In the segmentation approach, three different methods were tested: the SLIC superpixels, the Bag of Words Image and the Rolling Guidance filter with the multi-thresholding method. We also developed the Segment Gradient Orientation Histogram (SGOH) to describe the gradient of irregularly shaped blocks (segments). The experimental results illustrate that our proposed algorithms can detect forgery in images containing copy-move objects with different types of transformation (translation, rotation, scaling, distortion and combined transformation). Moreover, the proposed methods are robust to post-processing (i.e. blurring, brightness change, colour reduction, JPEG compression, variations in contrast and added noise) and can detect multiple duplicated objects. In addition, we developed a new method to estimate the similarity threshold for each image by optimizing a cost function based probability distribution. This method can detect CMF better than using a fixed threshold for all the test images, because our proposed method reduces the false positive and the time required to estimate one threshold for different images in the dataset. Finally, we used the hysteresis to decrease the number of false matches and produce the best possible result

    Image and Video Forensics

    Get PDF
    Nowadays, images and videos have become the main modalities of information being exchanged in everyday life, and their pervasiveness has led the image forensics community to question their reliability, integrity, confidentiality, and security. Multimedia contents are generated in many different ways through the use of consumer electronics and high-quality digital imaging devices, such as smartphones, digital cameras, tablets, and wearable and IoT devices. The ever-increasing convenience of image acquisition has facilitated instant distribution and sharing of digital images on digital social platforms, determining a great amount of exchange data. Moreover, the pervasiveness of powerful image editing tools has allowed the manipulation of digital images for malicious or criminal ends, up to the creation of synthesized images and videos with the use of deep learning techniques. In response to these threats, the multimedia forensics community has produced major research efforts regarding the identification of the source and the detection of manipulation. In all cases (e.g., forensic investigations, fake news debunking, information warfare, and cyberattacks) where images and videos serve as critical evidence, forensic technologies that help to determine the origin, authenticity, and integrity of multimedia content can become essential tools. This book aims to collect a diverse and complementary set of articles that demonstrate new developments and applications in image and video forensics to tackle new and serious challenges to ensure media authenticity

    AuSR2: Image watermarking technique for authentication and self-recovery with image texture preservation

    Get PDF
    This paper presents an image watermarking technique for authentication and self-recovery called AuSR2. The AuSR2 scheme partitions the cover image into 3 × 3 non-overlapping blocks. The watermark data is embedded into two Least Significant Bit (LSB), consisting of two authentication bits and 16 recovery bits for each block. The texture of each block is preserved in the recovery data. Thus, each tampered pixel can be recovered independently instead of using the average block. The recovery process may introduce the tamper coincidence problem, which can be solved using image inpainting. The AuSR2 implements the LSB shifting algorithm to increase the imperceptibility by 2.8%. The experimental results confirm that the AuSR2 can accurately detect the tampering area up to 100%. The AuSR2 can recover the tampered image with a PSNR value of 38.11 dB under a 10% tampering rate. The comparative analysis proves the superiority of the AuSR2 compared to the existing scheme

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Texture and Colour in Image Analysis

    Get PDF
    Research in colour and texture has experienced major changes in the last few years. This book presents some recent advances in the field, specifically in the theory and applications of colour texture analysis. This volume also features benchmarks, comparative evaluations and reviews
    corecore