59 research outputs found

    A survey on passive digital video forgery detection techniques

    Get PDF
    Digital media devices such as smartphones, cameras, and notebooks are becoming increasingly popular. Through digital platforms such as Facebook, WhatsApp, Twitter, and others, people share digital images, videos, and audio in large quantities. Especially in a crime scene investigation, digital evidence plays a crucial role in a courtroom. Manipulating video content with high-quality software tools is easier, which helps fabricate video content more efficiently. It is therefore necessary to develop an authenticating method for detecting and verifying manipulated videos. The objective of this paper is to provide a comprehensive review of the passive methods for detecting video forgeries. This survey has the primary goal of studying and analyzing the existing passive techniques for detecting video forgeries. First, an overview of the basic information needed to understand video forgery detection is presented. Later, it provides an in-depth understanding of the techniques used in the spatial, temporal, and spatio-temporal domain analysis of videos, datasets used, and their limitations are reviewed. In the following sections, standard benchmark video forgery datasets and the generalized architecture for passive video forgery detection techniques are discussed in more depth. Finally, identifying loopholes in existing surveys so detecting forged videos much more effectively in the future are discussed

    Digital Video Inpainting Detection Using Correlation Of Hessian Matrix

    Full text link

    A review of digital video tampering: from simple editing to full synthesis.

    Get PDF
    Video tampering methods have witnessed considerable progress in recent years. This is partly due to the rapid development of advanced deep learning methods, and also due to the large volume of video footage that is now in the public domain. Historically, convincing video tampering has been too labour intensive to achieve on a large scale. However, recent developments in deep learning-based methods have made it possible not only to produce convincing forged video but also to fully synthesize video content. Such advancements provide new means to improve visual content itself, but at the same time, they raise new challenges for state-of-the-art tampering detection methods. Video tampering detection has been an active field of research for some time, with periodic reviews of the subject. However, little attention has been paid to video tampering techniques themselves. This paper provides an objective and in-depth examination of current techniques related to digital video manipulation. We thoroughly examine their development, and show how current evaluation techniques provide opportunities for the advancement of video tampering detection. A critical and extensive review of photo-realistic video synthesis is provided with emphasis on deep learning-based methods. Existing tampered video datasets are also qualitatively reviewed and critically discussed. Finally, conclusions are drawn upon an exhaustive and thorough review of tampering methods with discussions of future research directions aimed at improving detection methods

    Video Inter-frame Forgery Detection Approach for Surveillance and Mobile Recorded Videos

    Get PDF
    We are living in an age where use of multimedia technologies like digital recorders and mobile phones is increasing rapidly. On the other hand, digital content manipulating softwares are also increasing making it easy for an individual to doctor the recorded content with trivial consumption of time and wealth. Digital multimedia forensics is gaining utmost importance to restrict unethical use of such easily available tampering techniques. These days, it is common for people to record videos using their smart phones. We have also witnessed a sudden growth in the use of surveillance cameras, which we see inhabiting almost every public location. Videos recorded using these devices usually contains crucial evidence of some event occurence and thereby most susceptible to inter-frame forgery which can be easily performed by insertion/removal/replication of frame(s). The proposed forensic technique enabled detection of inter-frame forgery in H.264 and MPEG-2 encoded videos especially mobile recorded and surveillance videos. This novel method introduced objectivity for automatic detection and localization of tampering by utilizing prediction residual gradient and optical flow gradient. Experimental results showed that this technique can detect tampering with 90% true positive rate, regardless of the video codec and recording device utilized and number of frames tampered

    Video copy-move forgery detection scheme based on displacement paths

    Get PDF
    Sophisticated digital video editing tools has made it easier to tamper real videos and create perceptually indistinguishable fake ones. Even worse, some post-processing effects, which include object insertion and deletion in order to mimic or hide a specific event in the video frames, are also prevalent. Many attempts have been made to detect such as video copy-move forgery to date; however, the accuracy rates are still inadequate and rooms for improvement are wide-open and its effectiveness is confined to the detection of frame tampering and not localization of the tampered regions. Thus, a new detection scheme was developed to detect forgery and improve accuracy. The scheme involves seven main steps. First, it converts the red, green and blue (RGB) video into greyscale frames and treats them as images. Second, it partitions each frame into non-overlapping blocks of sized 8x8 pixels each. Third, for each two successive frames (S2F), it tracks every block’s duplicate using the proposed two-tier detection technique involving Diamond search and Slantlet transform to locate the duplicated blocks. Fourth, for each pair of the duplicated blocks of the S2F, it calculates a displacement using optical flow concept. Fifth, based on the displacement values and empirically calculated threshold, the scheme detects existence of any deleted objects found in the frames. Once completed, it then extracts the moving object using the same threshold-based approach. Sixth, a frame-by-frame displacement tracking is performed to trace the object movement and find a displacement path of the moving object. The process is repeated for another group of frames to find the next displacement path of the second moving object until all the frames are exhausted. Finally, the displacement paths are compared between each other using Dynamic Time Warping (DTW) matching algorithm to detect the cloning object. If any pair of the displacement paths are perfectly matched then a clone is found. To validate the process, a series of experiments based on datasets from Surrey University Library for Forensic Analysis (SULFA) and Video Tampering Dataset (VTD) were performed to gauge the performance of the proposed scheme. The experimental results of the detection scheme were very encouraging with an accuracy rate of 96.86%, which markedly outperformed the state-of-the-art methods by as much as 3.14%

    Detecting Manipulations in Video

    Get PDF
    This chapter presents the techniques researched and developed within InVID for the forensic analysis of videos, and the detection and localization of forgeries within User-Generated Videos (UGVs). Following an overview of state-of-the-art video tampering detection techniques, we observed that the bulk of current research is mainly dedicated to frame-based tampering analysis or encoding-based inconsistency characterization. We built upon this existing research, by designing forensics filters aimed to highlight any traces left behind by video tampering, with a focus on identifying disruptions in the temporal aspects of a video. As for many other data analysis domains, deep neural networks show very promising results in tampering detection as well. Thus, following the development of a number of analysis filters aimed to help human users in highlighting inconsistencies in video content, we proceeded to develop a deep learning approach aimed to analyze the outputs of these forensics filters and automatically detect tampered videos. In this chapter, we present our survey of the state of the art with respect to its relevance to the goals of InVID, the forensics filters we developed and their potential role in localizing video forgeries, as well as our deep learning approach for automatic tampering detection. We present experimental results on benchmark and real-world data, and analyze the results. We observe that the proposed method yields promising results compared to the state of the art, especially with respect to the algorithm’s ability to generalize to unknown data taken from the real world. We conclude with the research directions that our work in InVID has opened for the future

    A new technique for video copy-move forgery detection

    Get PDF
    This thesis describes an algorithm for detecting copy-move falsifications in digital video. The thesis is composed of 5 chapters. In the first chapter there is an introduction to forgery detection for digital images and videos. Chapters 2, 3 and 4 describe in detail the techniques used for the implementation of the detection algorithm. The experimental results are presented in the fifth and last chapter

    Beyond the pixels: learning and utilising video compression features for localisation of digital tampering.

    Get PDF
    Video compression is pervasive in digital society. With rising usage of deep convolutional neural networks (CNNs) in the fields of computer vision, video analysis and video tampering detection, it is important to investigate how patterns invisible to human eyes may be influencing modern computer vision techniques and how they can be used advantageously. This work thoroughly explores how video compression influences accuracy of CNNs and shows how optimal performance is achieved when compression levels in the training set closely match those of the test set. A novel method is then developed, using CNNs, to derive compression features directly from the pixels of video frames. It is then shown that these features can be readily used to detect inauthentic video content with good accuracy across multiple different video tampering techniques. Moreover, the ability to explain these features allows predictions to be made about their effectiveness against future tampering methods. The problem is motivated with a novel investigation into recent video manipulation methods, which shows that there is a consistent drive to produce convincing, photorealistic, manipulated or synthetic video. Humans, blind to the presence of video tampering, are also blind to the type of tampering. New detection techniques are required and, in order to compensate for human limitations, they should be broadly applicable to multiple tampering types. This thesis details the steps necessary to develop and evaluate such techniques
    corecore