417 research outputs found

    Adaptive Data-driven Optimization using Transfer Learning for Resilient, Energy-efficient, Resource-aware, and Secure Network Slicing in 5G-Advanced and 6G Wireless Systems

    Get PDF
    Title from PDF of title page, viewed January 31, 2023Dissertation advisor: Cory BeardVitaIncludes bibliographical references (pages 134-141)Dissertation (Ph.D)--Department of Computer Science and Electrical Engineering. University of Missouri--Kansas City, 20225G–Advanced is the next step in the evolution of the fifth–generation (5G) technology. It will introduce a new level of expanded capabilities beyond connections and enables a broader range of advanced applications and use cases. 5G–Advanced will support modern applications with greater mobility and high dependability. Artificial intelligence and Machine Learning will enhance network performance with spectral efficiency and energy savings enhancements. This research established a framework to optimally control and manage an appropriate selection of network slices for incoming requests from diverse applications and services in Beyond 5G networks. The developed DeepSlice model is used to optimize the network and individual slice load efficiency across isolated slices and manage slice lifecycle in case of failure. The DeepSlice framework can predict the unknown connections by utilizing the learning from a developed deep-learning neural network model. The research also addresses threats to the performance, availability, and robustness of B5G networks by proactively preventing and resolving threats. The study proposed a Secure5G framework for authentication, authorization, trust, and control for a network slicing architecture in 5G systems. The developed model prevents the 5G infrastructure from Distributed Denial of Service by analyzing incoming connections and learning from the developed model. The research demonstrates the preventive measure against volume attacks, flooding attacks, and masking (spoofing) attacks. This research builds the framework towards the zero trust objective (never trust, always verify, and verify continuously) that improves resilience. Another fundamental difficulty for wireless network systems is providing a desirable user experience in various network conditions, such as those with varying network loads and bandwidth fluctuations. Mobile Network Operators have long battled unforeseen network traffic events. This research proposed ADAPTIVE6G to tackle the network load estimation problem using knowledge-inspired Transfer Learning by utilizing radio network Key Performance Indicators from network slices to understand and learn network load estimation problems. These algorithms enable Mobile Network Operators to optimally coordinate their computational tasks in stochastic and time-varying network states. Energy efficiency is another significant KPI in tracking the sustainability of network slicing. Increasing traffic demands in 5G dramatically increase the energy consumption of mobile networks. This increase is unsustainable in terms of dollar cost and environmental impact. This research proposed an innovative ECO6G model to attain sustainability and energy efficiency. Research findings suggested that the developed model can reduce network energy costs without negatively impacting performance or end customer experience against the classical Machine Learning and Statistical driven models. The proposed model is validated against the industry-standardized energy efficiency definition, and operational expenditure savings are derived, showing significant cost savings to MNOs.Introduction -- A deep neural network framework towards a resilient, efficient, and secure network slicing in Beyond 5G Networks -- Adaptive resource management techniques for network slicing in Beyond 5G networks using transfer learning -- Energy and cost analysis for network slicing deployment in Beyond 5G networks -- Conclusion and future scop

    Quality of experience and access network traffic management of HTTP adaptive video streaming

    Get PDF
    The thesis focuses on Quality of Experience (QoE) of HTTP adaptive video streaming (HAS) and traffic management in access networks to improve the QoE of HAS. First, the QoE impact of adaptation parameters and time on layer was investigated with subjective crowdsourcing studies. The results were used to compute a QoE-optimal adaptation strategy for given video and network conditions. This allows video service providers to develop and benchmark improved adaptation logics for HAS. Furthermore, the thesis investigated concepts to monitor video QoE on application and network layer, which can be used by network providers in the QoE-aware traffic management cycle. Moreover, an analytic and simulative performance evaluation of QoE-aware traffic management on a bottleneck link was conducted. Finally, the thesis investigated socially-aware traffic management for HAS via Wi-Fi offloading of mobile HAS flows. A model for the distribution of public Wi-Fi hotspots and a platform for socially-aware traffic management on private home routers was presented. A simulative performance evaluation investigated the impact of Wi-Fi offloading on the QoE and energy consumption of mobile HAS.Die Doktorarbeit beschäftigt sich mit Quality of Experience (QoE) – der subjektiv empfundenen Dienstgüte – von adaptivem HTTP Videostreaming (HAS) und mit Verkehrsmanagement, das in Zugangsnetzwerken eingesetzt werden kann, um die QoE des adaptiven Videostreamings zu verbessern. Zuerst wurde der Einfluss von Adaptionsparameters und der Zeit pro Qualitätsstufe auf die QoE von adaptivem Videostreaming mittels subjektiver Crowdsourcingstudien untersucht. Die Ergebnisse wurden benutzt, um die QoE-optimale Adaptionsstrategie für gegebene Videos und Netzwerkbedingungen zu berechnen. Dies ermöglicht Dienstanbietern von Videostreaming verbesserte Adaptionsstrategien für adaptives Videostreaming zu entwerfen und zu benchmarken. Weiterhin untersuchte die Arbeit Konzepte zum Überwachen von QoE von Videostreaming in der Applikation und im Netzwerk, die von Netzwerkbetreibern im Kreislauf des QoE-bewussten Verkehrsmanagements eingesetzt werden können. Außerdem wurde eine analytische und simulative Leistungsbewertung von QoE-bewusstem Verkehrsmanagement auf einer Engpassverbindung durchgeführt. Schließlich untersuchte diese Arbeit sozialbewusstes Verkehrsmanagement für adaptives Videostreaming mittels WLAN Offloading, also dem Auslagern von mobilen Videoflüssen über WLAN Netzwerke. Es wurde ein Modell für die Verteilung von öffentlichen WLAN Zugangspunkte und eine Plattform für sozialbewusstes Verkehrsmanagement auf privaten, häuslichen WLAN Routern vorgestellt. Abschließend untersuchte eine simulative Leistungsbewertung den Einfluss von WLAN Offloading auf die QoE und den Energieverbrauch von mobilem adaptivem Videostreaming

    Distributed Sensing, Computing, Communication, and Control Fabric: A Unified Service-Level Architecture for 6G

    Full text link
    With the advent of the multimodal immersive communication system, people can interact with each other using multiple devices for sensing, communication and/or control either onsite or remotely. As a breakthrough concept, a distributed sensing, computing, communications, and control (DS3C) fabric is introduced in this paper for provisioning 6G services in multi-tenant environments in a unified manner. The DS3C fabric can be further enhanced by natively incorporating intelligent algorithms for network automation and managing networking, computing, and sensing resources efficiently to serve vertical use cases with extreme and/or conflicting requirements. As such, the paper proposes a novel end-to-end 6G system architecture with enhanced intelligence spanning across different network, computing, and business domains, identifies vertical use cases and presents an overview of the relevant standardization and pre-standardization landscape

    MetaOmniCity: Towards urban metaverse cyberspaces using immersive smart city digital twins

    Get PDF
    The movie - The Matrix (1999) - boosted our imagination about how further we can be immersed within the cyber world, i.e., how further the cyber world can be indistinguishable from the real world with the metaverse space travel. Nobody had expected involving the creators that the aspirational fictional virtual worlds such as "ActiveWorlds (1995)", and ``Second Life (2003)'' with many urban experiences embedded into a rich featured 3D environment would impact the way of experiencing our real urban environments. Are we going to feel/become ourselves - our cyber-physical presence (e.g., our augmented avatars) - in other mirror worlds doing many other things? Are the created imaginary worlds becoming a part of the real worlds or vice versa? The recent once-in-a-lifetime pandemic has confirmed the importance of location and time-independent Digital Twins (DTs) (i.e., virtual scale models) of cities and their automated services that can provide everybody with equity and accessibility by democratising all types of services leading to increased Quality of Life (QoL). This study analyses how the metaverse (3D elevation of linear Internet), that aims to build high-fidelity virtual worlds with which to interact with the real world, can be engaged within the Smart City (SC) ecosystem with high immersive Quality of Experiences (QoE) and an urban metaverse ecosystem framework — MetaOmniCity — that is designed to demonstrate a variety of insights and orchestrational directions for policymakers, city planners and all other stakeholders about how to transform data-driven SCs with DTs into virtually inhabitable cities with a network of shared urban experiences from a metaverse point of view. MetaOmniCity, allowing the metaversification of cities with granular virtual societies, i.e., MetaSocieties, and eliminating the boundaries (e.g., time, space and language) between the real world and their virtual counterparts, can be shaped to the particular requirements and features of cities. This can pave the way for immersive globalisation with the bigger and richer metaverse of Country (MoC) and metaverse of World (MoW) being an immersive DT of the broader universe with digitally connected cities by removing physical borders. MetaOmniCity is expected to accelerate the building, deployment, and adoption of immersive urban metaverse worlds/networks for citizens to interface with as an extension of real urban social and individual experiences

    Towards addressing training data scarcity challenge in emerging radio access networks: a survey and framework

    Get PDF
    The future of cellular networks is contingent on artificial intelligence (AI) based automation, particularly for radio access network (RAN) operation, optimization, and troubleshooting. To achieve such zero-touch automation, a myriad of AI-based solutions are being proposed in literature to leverage AI for modeling and optimizing network behavior to achieve the zero-touch automation goal. However, to work reliably, AI based automation, requires a deluge of training data. Consequently, the success of the proposed AI solutions is limited by a fundamental challenge faced by cellular network research community: scarcity of the training data. In this paper, we present an extensive review of classic and emerging techniques to address this challenge. We first identify the common data types in RAN and their known use-cases. We then present a taxonomized survey of techniques used in literature to address training data scarcity for various data types. This is followed by a framework to address the training data scarcity. The proposed framework builds on available information and combination of techniques including interpolation, domain-knowledge based, generative adversarial neural networks, transfer learning, autoencoders, fewshot learning, simulators and testbeds. Potential new techniques to enrich scarce data in cellular networks are also proposed, such as by matrix completion theory, and domain knowledge-based techniques leveraging different types of network geometries and network parameters. In addition, an overview of state-of-the art simulators and testbeds is also presented to make readers aware of current and emerging platforms to access real data in order to overcome the data scarcity challenge. The extensive survey of training data scarcity addressing techniques combined with proposed framework to select a suitable technique for given type of data, can assist researchers and network operators in choosing the appropriate methods to overcome the data scarcity challenge in leveraging AI to radio access network automation

    Security Technologies and Methods for Advanced Cyber Threat Intelligence, Detection and Mitigation

    Get PDF
    The rapid growth of the Internet interconnectivity and complexity of communication systems has led us to a significant growth of cyberattacks globally often with severe and disastrous consequences. The swift development of more innovative and effective (cyber)security solutions and approaches are vital which can detect, mitigate and prevent from these serious consequences. Cybersecurity is gaining momentum and is scaling up in very many areas. This book builds on the experience of the Cyber-Trust EU project’s methods, use cases, technology development, testing and validation and extends into a broader science, lead IT industry market and applied research with practical cases. It offers new perspectives on advanced (cyber) security innovation (eco) systems covering key different perspectives. The book provides insights on new security technologies and methods for advanced cyber threat intelligence, detection and mitigation. We cover topics such as cyber-security and AI, cyber-threat intelligence, digital forensics, moving target defense, intrusion detection systems, post-quantum security, privacy and data protection, security visualization, smart contracts security, software security, blockchain, security architectures, system and data integrity, trust management systems, distributed systems security, dynamic risk management, privacy and ethics

    Transforming Large-Scale Virtualized Networks: Advancements in Latency Reduction, Availability Enhancement, and Security Fortification

    Get PDF
    In today’s digital age, the increasing demand for networks, driven by the proliferation of connected devices, data-intensive applications, and transformative technologies, necessitates robust and efficient network infrastructure. This thesis addresses the challenges posed by virtualization in 5G networking and focuses on enhancing next-generation Radio Access Networks (RANs), particularly Open-RAN (O-RAN). The objective is to transform virtualized networks into highly reliable, secure, and latency-aware systems. To achieve this, the thesis proposes novel strategies for virtual function placement, traffic steering, and virtual function security within O-RAN. These solutions utilize optimization techniques such as binary integer programming, mixed integer binary programming, column generation, and machine learning algorithms, including supervised learning and deep reinforcement learning. By implementing these contributions, network service providers can deploy O-RAN with enhanced reliability, speed, and security, specifically tailored for Ultra-Reliable and Low Latency Communications use cases. The optimized RAN virtualization achieved through this research unlocks a new era in network architecture that can confidently support URLLC applications, including Autonomous Vehicles, Industrial Automation and Robotics, Public Safety and Emergency Services, and Smart Grids
    • …
    corecore