6,348 research outputs found

    Ontology For Europe's Space Situational Awareness Program

    Get PDF
    This paper presents an ontology architecture concept for the European Space Agency‘s (ESA) Space Situational Awareness (SSA) Program. It incorporates the author‘s domain ontology, The Space Situational Awareness Ontology and related ontology work. I summarize computational ontology, discuss the segments of ESA SSA, and introduce an option for a modular ontology framework reflecting the divisionsof the SSA program. Among other things, ontologies are used for data sharing and integration. By applying ontology to ESA data, the ESA may better achieve its integration and innovation goals, while simultaneously improving the state of peaceful SSA

    A Hierarchal Planning Framework for AUV Mission Management in a Spatio-Temporal Varying Ocean

    Full text link
    The purpose of this paper is to provide a hierarchical dynamic mission planning framework for a single autonomous underwater vehicle (AUV) to accomplish task-assign process in a limited time interval while operating in an uncertain undersea environment, where spatio-temporal variability of the operating field is taken into account. To this end, a high level reactive mission planner and a low level motion planning system are constructed. The high level system is responsible for task priority assignment and guiding the vehicle toward a target of interest considering on-time termination of the mission. The lower layer is in charge of generating optimal trajectories based on sequence of tasks and dynamicity of operating terrain. The mission planner is able to reactively re-arrange the tasks based on mission/terrain updates while the low level planner is capable of coping unexpected changes of the terrain by correcting the old path and re-generating a new trajectory. As a result, the vehicle is able to undertake the maximum number of tasks with certain degree of maneuverability having situational awareness of the operating field. The computational engine of the mentioned framework is based on the biogeography based optimization (BBO) algorithm that is capable of providing efficient solutions. To evaluate the performance of the proposed framework, firstly, a realistic model of undersea environment is provided based on realistic map data, and then several scenarios, treated as real experiments, are designed through the simulation study. Additionally, to show the robustness and reliability of the framework, Monte-Carlo simulation is carried out and statistical analysis is performed. The results of simulations indicate the significant potential of the two-level hierarchical mission planning system in mission success and its applicability for real-time implementation

    Active Optical Remote Sensing Sensors and Instrumentation for NASAs Future Earth and Space Science Measurements/Missions

    Get PDF
    AbstractActive optical (Laser/Lidar) measurement techniques are critical for the future National Aeronautics and Space Administration (NASA) Earth, Planetary Science, Exploration, and Aeronautics measurements. The latest science decadal surveys recommend a number of missions requiring active optical systems to meet the science measurement objectives and the aeronautics community continues to use Laser/Lidar technologies to meet the aeronautics measurement objectives. This presentation will provide an overview of NASA efforts in developing and maturing state-of-the-art advanced solid-state flight laser/lidar systems for airborne and space-borne remote sensing measurements. The presentation will also provide details of a strategic approach for active optical technologies and techniques to meet the NASAs future Earth and Space Science measurement ments for space-based applications

    Enhancing Situation Awareness of Chemical Release Through Source Inversion

    Get PDF
    AbstractSituation awareness is an important function module contained in the information system for regional emergency rescue. To improve the existing emergency information system, a situation awareness model of chemical release is constructed containing three levels, i.e. Data Acquisition, Intelligent Analysis and Simulation & Prediction, in which Intelligent Analysis was designed as an independent functional item for unknown source detection. Combining the receptor data with the atmospheric dispersion model, the source items estimation problem was then converted to a standardized concentration field fitting problem. Particle Swarm Optimization (PSO) was introduced to optimize the combination solution of multi-parameters including source strength, location, height and release time. The effectiveness and applicability of this method was verified through dozens of simulated tests. Further performance comparison with Nelder Mead Simplex Method and Genetic Algorithm show the results: in terms of estimation accuracy, computational efficiency and algorithm robustness, PSO are all superior to the other two algorithms. It can be flexible with different atmospheric dispersion models for fast source inversion in integrated situational awareness system

    Aerospace Medicine and Biology

    Get PDF
    This bibliography lists 184 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during October 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    LunaNet: a Flexible and Extensible Lunar Exploration Communications and Navigation Infrastructure

    Get PDF
    NASA has set the ambitious goal of establishing a sustainable human presence on the Moon. Diverse commercial and international partners are engaged in this effort to catalyze scientific discovery, lunar resource utilization and economic development on both the Earth and at the Moon. Lunar development will serve as a critical proving ground for deeper exploration into the solar system. Space communications and navigation infrastructure will play an integral part in realizing this goal. This paper provides a high-level description of an extensible and scalable lunar communications and navigation architecture, known as LunaNet. LunaNet is a services network to enable lunar operations. Three LunaNet service types are defined: networking services, position, navigation and timing services, and science utilization services. The LunaNet architecture encompasses a wide variety of topology implementations, including surface and orbiting provider nodes. In this paper several systems engineering considerations within the service architecture are highlighted. Additionally, several alternative LunaNet instantiations are presented. Extensibility of the LunaNet architecture to the solar system internet is discussed

    Contextual information aided target tracking and path planning for autonomous ground vehicles

    Get PDF
    Recently, autonomous vehicles have received worldwide attentions from academic research, automotive industry and the general public. In order to achieve a higher level of automation, one of the most fundamental requirements of autonomous vehicles is the capability to respond to internal and external changes in a safe, timely and appropriate manner. Situational awareness and decision making are two crucial enabling technologies for safe operation of autonomous vehicles. This thesis presents a solution for improving the automation level of autonomous vehicles in both situational awareness and decision making aspects by utilising additional domain knowledge such as constraints and influence on a moving object caused by environment and interaction between different moving objects. This includes two specific sub-systems, model based target tracking in environmental perception module and motion planning in path planning module. In the first part, a rigorous Bayesian framework is developed for pooling road constraint information and sensor measurement data of a ground vehicle to provide better situational awareness. Consequently, a new multiple targets tracking (MTT) strategy is proposed for solving target tracking problems with nonlinear dynamic systems and additional state constraints. Besides road constraint information, a vehicle movement is generally affected by its surrounding environment known as interaction information. A novel dynamic modelling approach is then proposed by considering the interaction information as virtual force which is constructed by involving the target state, desired dynamics and interaction information. The proposed modelling approach is then accommodated in the proposed MTT strategy for incorporating different types of domain knowledge in a comprehensive manner. In the second part, a new path planning strategy for autonomous vehicles operating in partially known dynamic environment is suggested. The proposed MTT technique is utilized to provide accurate on-board tracking information with associated level of uncertainty. Based on the tracking information, a path planning strategy is developed to generate collision free paths by not only predicting the future states of the moving objects but also taking into account the propagation of the associated estimation uncertainty within a given horizon. To cope with a dynamic and uncertain road environment, the strategy is implemented in a receding horizon fashion

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio
    corecore