45,211 research outputs found

    A new approach to particle swarm optimization algorithm

    Get PDF
    Particularly interesting group consists of algorithms that implement co-evolution or co-operation in natural environments, giving much more powerful implementations. The main aim is to obtain the algorithm which operation is not influenced by the environment. An unusual look at optimization algorithms made it possible to develop a new algorithm and its metaphors define for two groups of algorithms. These studies concern the particle swarm optimization algorithm as a model of predator and prey. New properties of the algorithm resulting from the co-operation mechanism that determines the operation of algorithm and significantly reduces environmental influence have been shown. Definitions of functions of behavior scenarios give new feature of the algorithm. This feature allows self controlling the optimization process. This approach can be successfully used in computer games. Properties of the new algorithm make it worth of interest, practical application and further research on its development. This study can be also an inspiration to search other solutions that implementing co-operation or co-evolution.Angeline, P. (1998). Using selection to improve particle swarm optimization. In Proceedings of the IEEE congress on evolutionary computation, Anchorage (pp. 84–89).Arquilla, J., & Ronfeldt, D. (2000). Swarming and the future of conflict, RAND National Defense Research Institute, Santa Monica, CA, US.Bessaou, M., & Siarry, P. (2001). A genetic algorithm with real-value coding to optimize multimodal continuous functions. Structural and Multidiscipline Optimization, 23, 63–74.Bird, S., & Li, X. (2006). Adaptively choosing niching parameters in a PSO. In Proceedings of the 2006 genetic and evolutionary computation conference (pp. 3–10).Bird, S., & Li, X. (2007). Using regression to improve local convergence. In Proceedings of the 2007 IEEE congress on evolutionary computation (pp. 592–599).Blackwell, T., & Bentley, P. (2002). Dont push me! Collision-avoiding swarms. In Proceedings of the IEEE congress on evolutionary computation, Honolulu (pp. 1691–1696).Brits, R., Engelbrecht, F., & van den Bergh, A. P. (2002). Solving systems of unconstrained equations using particle swarm optimization. In Proceedings of the 2002 IEEE conference on systems, man, and cybernetics (pp. 102–107).Brits, R., Engelbrecht, A., & van den Bergh, F. (2002). A niching particle swarm optimizer. In Proceedings of the fourth asia-pacific conference on simulated evolution and learning (pp. 692–696).Chelouah, R., & Siarry, P. (2000). A continuous genetic algorithm designed for the global optimization of multimodal functions. Journal of Heuristics, 6(2), 191–213.Chelouah, R., & Siarry, P. (2000). Tabu search applied to global optimization. European Journal of Operational Research, 123, 256–270.Chelouah, R., & Siarry, P. (2003). Genetic and Nelder–Mead algorithms hybridized for a more accurate global optimization of continuous multiminima function. European Journal of Operational Research, 148(2), 335–348.Chelouah, R., & Siarry, P. (2005). A hybrid method combining continuous taboo search and Nelder–Mead simplex algorithms for the global optimization of multiminima functions. European Journal of Operational Research, 161, 636–654.Chen, T., & Chi, T. (2010). On the improvements of the particle swarm optimization algorithm. Advances in Engineering Software, 41(2), 229–239.Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58–73.Fan, H., & Shi, Y. (2001). Study on Vmax of particle swarm optimization. In Proceedings of the workshop particle swarm optimization, Indianapolis.Gao, H., & Xu, W. (2011). Particle swarm algorithm with hybrid mutation strategy. Applied Soft Computing, 11(8), 5129–5142.Gosciniak, I. (2008). Immune algorithm in non-stationary optimization task. In Proceedings of the 2008 international conference on computational intelligence for modelling control & automation, CIMCA ’08 (pp. 750–755). Washington, DC, USA: IEEE Computer Society.He, Q., & Wang, L. (2007). An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Engineering Applications of Artificial Intelligence, 20(1), 89–99.Higashitani, M., Ishigame, A., & Yasuda, K., (2006). Particle swarm optimization considering the concept of predator–prey behavior. In 2006 IEEE congress on evolutionary computation (pp. 434–437).Higashitani, M., Ishigame, A., & Yasuda, K. (2008). Pursuit-escape particle swarm optimization. IEEJ Transactions on Electrical and Electronic Engineering, 3(1), 136–142.Hu, X., & Eberhart, R. (2002). Multiobjective optimization using dynamic neighborhood particle swarm optimization. In Proceedings of the evolutionary computation on 2002. CEC ’02. Proceedings of the 2002 congress (Vol. 02, pp. 1677–1681). Washington, DC, USA: IEEE Computer Society.Hu, X., Eberhart, R., & Shi, Y. (2003). Engineering optimization with particle swarm. In IEEE swarm intelligence symposium, SIS 2003 (pp. 53–57). Indianapolis: IEEE Neural Networks Society.Jang, W., Kang, H., Lee, B., Kim, K., Shin, D., & Kim, S. (2007). Optimized fuzzy clustering by predator prey particle swarm optimization. In IEEE congress on evolutionary computation, CEC2007 (pp. 3232–3238).Kennedy, J. (2000). Stereotyping: Improving particle swarm performance with cluster analysis. In Proceedings of the 2000 congress on evolutionary computation (pp. 1507–1512).Kennedy, J., & Mendes, R. (2002). Population structure and particle swarm performance. In IEEE congress on evolutionary computation (pp. 1671–1676).Kuo, H., Chang, J., & Shyu, K. (2004). A hybrid algorithm of evolution and simplex methods applied to global optimization. Journal of Marine Science and Technology, 12(4), 280–289.Leontitsis, A., Kontogiorgos, D., & Pange, J. (2006). Repel the swarm to the optimum. Applied Mathematics and Computation, 173(1), 265–272.Li, X. (2004). Adaptively choosing neighborhood bests using species in a particle swarm optimizer for multimodal function optimization. In Proceedings of the 2004 genetic and evolutionary computation conference (pp. 105–116).Li, C., & Yang, S. (2009). A clustering particle swarm optimizer for dynamic optimization. In Proceedings of the 2009 congress on evolutionary computation (pp. 439–446).Liang, J., Suganthan, P., & Deb, K. (2005). Novel composition test functions for numerical global optimization. In Proceedings of the swarm intelligence symposium [Online]. Available: .Liang, J., Qin, A., Suganthan, P., & Baskar, S. (2006). Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 10(3), 281–295.Lovbjerg, M., & Krink, T. (2002). Extending particle swarm optimizers with self-organized criticality. In Proceedings of the congress on evolutionary computation, Honolulu (pp. 1588–1593).Lung, R., & Dumitrescu, D. (2007). A collaborative model for tracking optima in dynamic environments. In Proceedings of the 2007 congress on evolutionary computation (pp. 564–567).Mendes, R., Kennedy, J., & Neves, J. (2004). The fully informed particle swarm: simpler, maybe better. IEEE Transaction on Evolutionary Computation, 8(3), 204–210.Miranda, V., & Fonseca, N. (2002). New evolutionary particle swarm algorithm (EPSO) applied to voltage/VAR control. In Proceedings of the 14th power systems computation conference, Seville, Spain [Online] Available: .Parrott, D., & Li, X. (2004). A particle swarm model for tracking multiple peaks in a dynamic environment using speciation. In Proceedings of the 2004 congress on evolutionary computation (pp. 98–103).Parrott, D., & Li, X. (2006). Locating and tracking multiple dynamic optima by a particle swarm model using speciation. In IEEE transaction on evolutionary computation (Vol. 10, pp. 440–458).Parsopoulos, K., & Vrahatis, M. (2004). UPSOA unified particle swarm optimization scheme. Lecture Series on Computational Sciences, 868–873.Passaroand, A., & Starita, A. (2008). Particle swarm optimization for multimodal functions: A clustering approach. Journal of Artificial Evolution and Applications, 2008, 15 (Article ID 482032).Peram, T., Veeramachaneni, K., & Mohan, C. (2003). Fitness-distance-ratio based particle swarm optimization. In Swarm intelligence symp. (pp. 174–181).Sedighizadeh, D., & Masehian, E. (2009). Particle swarm optimization methods, taxonomy and applications. International Journal of Computer Theory and Engineering, 1(5), 1793–8201.Shi, Y., & Eberhart, R. (2001). Particle swarm optimization with fuzzy adaptive inertia weight. In Proceedings of the workshop particle swarm optimization, Indianapolis (pp. 101–106).Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In Proceedings of IEEE International Conference on Evolutionary Computation (pp. 69–73). Washington, DC, USA: IEEE Computer Society.Thomsen, R. (2004). Multimodal optimization using crowding-based differential evolution. In Proceedings of the 2004 congress on evolutionary computation (pp. 1382–1389).Trojanowski, K., & Wierzchoń, S. (2009). Immune-based algorithms for dynamic optimization. Information Sciences, 179(10), 1495–1515.Tsoulos, I., & Stavrakoudis, A. (2010). Enhancing PSO methods for global optimization. Applied Mathematics and Computation, 216(10), 2988–3001.van den Bergh, F., & Engelbrecht, A. (2004). A cooperative approach to particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8, 225–239.Wolpert, D., & Macready, W. (1997). No free lunch theorems for optimization. IEEE Transaction on Evolutionary Computation, 1(1), 67–82.Xie, X., Zhang, W., & Yang, Z. (2002). Dissipative particle swarm optimization. In Proceedings of the congress on evolutionary computation (pp. 1456–1461).Yang, S., & Li, C. (2010). A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments. In IEEE Trans. on evolutionary computation (Vol. 14, pp. 959–974).Kuo, H., Chang, J., & Liu, C. (2006). Particle swarm optimization for global optimization problems. Journal of Marine Science and Technology, 14(3), 170–181

    Grand Tour Algorithm: Novel Swarm-Based Optimization for High-Dimensional Problems

    Full text link
    [EN] Agent-based algorithms, based on the collective behavior of natural social groups, exploit innate swarm intelligence to produce metaheuristic methodologies to explore optimal solutions for diverse processes in systems engineering and other sciences. Especially for complex problems, the processing time, and the chance to achieve a local optimal solution, are drawbacks of these algorithms, and to date, none has proved its superiority. In this paper, an improved swarm optimization technique, named Grand Tour Algorithm (GTA), based on the behavior of a peloton of cyclists, which embodies relevant physical concepts, is introduced and applied to fourteen benchmarking optimization problems to evaluate its performance in comparison to four other popular classical optimization metaheuristic algorithms. These problems are tackled initially, for comparison purposes, with 1000 variables. Then, they are confronted with up to 20,000 variables, a really large number, inspired in the human genome. The obtained results show that GTA clearly outperforms the other algorithms. To strengthen GTA's value, various sensitivity analyses are performed to verify the minimal influence of the initial parameters on efficiency. It is demonstrated that the GTA fulfils the fundamental requirements of an optimization algorithm such as ease of implementation, speed of convergence, and reliability. Since optimization permeates modeling and simulation, we finally propose that GTA will be appealing for the agent-based community, and of great help for a wide variety of agent-based applications.Meirelles, G.; Brentan, B.; Izquierdo Sebastián, J.; Luvizotto, EJ. (2020). Grand Tour Algorithm: Novel Swarm-Based Optimization for High-Dimensional Problems. Processes. 8(8):1-19. https://doi.org/10.3390/pr8080980S11988Mohamed, A. W., Hadi, A. A., & Mohamed, A. K. (2019). Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm. International Journal of Machine Learning and Cybernetics, 11(7), 1501-1529. doi:10.1007/s13042-019-01053-xMirjalili, S., & Lewis, A. (2016). The Whale Optimization Algorithm. Advances in Engineering Software, 95, 51-67. doi:10.1016/j.advengsoft.2016.01.008Chatterjee, A., & Siarry, P. (2006). Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Computers & Operations Research, 33(3), 859-871. doi:10.1016/j.cor.2004.08.012Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical Computer Science, 344(2-3), 243-278. doi:10.1016/j.tcs.2005.05.020Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459-471. doi:10.1007/s10898-007-9149-xGandomi, A. H., Yang, X.-S., & Alavi, A. H. (2011). Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17-35. doi:10.1007/s00366-011-0241-yKirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671Wu, Z. Y., & Simpson, A. R. (2002). A self-adaptive boundary search genetic algorithm and its application to water distribution systems. Journal of Hydraulic Research, 40(2), 191-203. doi:10.1080/00221680209499862Trelea, I. C. (2003). The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters, 85(6), 317-325. doi:10.1016/s0020-0190(02)00447-7Brentan, B., Meirelles, G., Luvizotto, E., & Izquierdo, J. (2018). Joint Operation of Pressure-Reducing Valves and Pumps for Improving the Efficiency of Water Distribution Systems. Journal of Water Resources Planning and Management, 144(9), 04018055. doi:10.1061/(asce)wr.1943-5452.0000974Freire, R. Z., Oliveira, G. H. C., & Mendes, N. (2008). Predictive controllers for thermal comfort optimization and energy savings. Energy and Buildings, 40(7), 1353-1365. doi:10.1016/j.enbuild.2007.12.007Bollinger, L. A., & Evins, R. (2015). Facilitating Model Reuse and Integration in an Urban Energy Simulation Platform. Procedia Computer Science, 51, 2127-2136. doi:10.1016/j.procs.2015.05.484Yang, Y., & Chui, T. F. M. (2019). Developing a Flexible Simulation-Optimization Framework to Facilitate Sustainable Urban Drainage Systems Designs Through Software Reuse. Reuse in the Big Data Era, 94-99. doi:10.1007/978-3-030-22888-0_7Mavrovouniotis, M., Li, C., & Yang, S. (2017). A survey of swarm intelligence for dynamic optimization: Algorithms and applications. Swarm and Evolutionary Computation, 33, 1-17. doi:10.1016/j.swevo.2016.12.005Hybinette, M., & Fujimoto, R. M. (2001). Cloning parallel simulations. ACM Transactions on Modeling and Computer Simulation, 11(4), 378-407. doi:10.1145/508366.508370Proceedings of the 2004 Winter Simulation Conference (IEEE Cat. No.04CH37614C). (2004). Proceedings of the 2004 Winter Simulation Conference, 2004. doi:10.1109/wsc.2004.1371294Li, Z., Wang, W., Yan, Y., & Li, Z. (2015). PS–ABC: A hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems. Expert Systems with Applications, 42(22), 8881-8895. doi:10.1016/j.eswa.2015.07.043Montalvo, I., Izquierdo, J., Pérez-García, R., & Herrera, M. (2014). Water Distribution System Computer-Aided Design by Agent Swarm Optimization. Computer-Aided Civil and Infrastructure Engineering, 29(6), 433-448. doi:10.1111/mice.12062Heuristic Optimization. (s. f.). Advances in Computational Management Science, 38-76. doi:10.1007/0-387-25853-1_2Zong Woo Geem, Joong Hoon Kim, & Loganathan, G. V. (2001). A New Heuristic Optimization Algorithm: Harmony Search. SIMULATION, 76(2), 60-68. doi:10.1177/003754970107600201Blocken, B., van Druenen, T., Toparlar, Y., Malizia, F., Mannion, P., Andrianne, T., … Diepens, J. (2018). Aerodynamic drag in cycling pelotons: New insights by CFD simulation and wind tunnel testing. Journal of Wind Engineering and Industrial Aerodynamics, 179, 319-337. doi:10.1016/j.jweia.2018.06.011Clerc, M., & Kennedy, J. (2002). The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58-73. doi:10.1109/4235.985692GAMS World, GLOBAL Libraryhttp://www.gamsworld.org/global/globallib.htmlCUTEr, A Constrained and Un-Constrained Testing Environment, Revisitedhttp://cuter.rl.ac.uk/cuter-www/problems.htmlGO Test Problemshttp://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htmJamil, M., & Yang, X. S. (2013). A literature survey of benchmark functions for global optimisation problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2), 150. doi:10.1504/ijmmno.2013.055204Sharma, G. (2012). The Human Genome Project and its promise. Journal of Indian College of Cardiology, 2(1), 1-3. doi:10.1016/s1561-8811(12)80002-2Li, W. (2011). On parameters of the human genome. Journal of Theoretical Biology, 288, 92-104. doi:10.1016/j.jtbi.2011.07.021Hughes, M., Goerigk, M., & Wright, M. (2019). A largest empty hypersphere metaheuristic for robust optimisation with implementation uncertainty. Computers & Operations Research, 103, 64-80. doi:10.1016/j.cor.2018.10.013Zaeimi, M., & Ghoddosian, A. (2020). Color harmony algorithm: an art-inspired metaheuristic for mathematical function optimization. Soft Computing, 24(16), 12027-12066. doi:10.1007/s00500-019-04646-4Singh, G. P., & Singh, A. (2014). Comparative Study of Krill Herd, Firefly and Cuckoo Search Algorithms for Unimodal and Multimodal Optimization. International Journal of Intelligent Systems and Applications in Engineering, 2(3), 26. doi:10.18201/ijisae.31981Taheri, S. M., & Hesamian, G. (2012). A generalization of the Wilcoxon signed-rank test and its applications. Statistical Papers, 54(2), 457-470. doi:10.1007/s00362-012-0443-

    Water Distribution System Computer-Aided Design by Agent Swarm Optimization

    Full text link
    Optimal design of water distribution systems (WDS), including the sizing of components, quality control, reliability, renewal and rehabilitation strategies, etc., is a complex problem in water engineering that requires robust methods of optimization. Classical methods of optimization are not well suited for analyzing highly-dimensional, multimodal, non-linear problems, especially given inaccurate, noisy, discrete and complex data. Agent Swarm Optimization (ASO) is a novel paradigm that exploits swarm intelligence and borrows some ideas from multiagent based systems. It is aimed at supporting decisionmaking processes by solving multi-objective optimization problems. ASO offers robustness through a framework where various population-based algorithms co-exist. The ASO framework is described and used to solve the optimal design of WDS. The approach allows engineers to work in parallel with the computational algorithms to force the recruitment of new searching elements, thus contributing to the solution process with expert-based proposals.This work has been developed with the support of the project IDAWAS, DPI2009-11591, of the Spanish Ministry of Education and Science, and ACOMP/2010/146 of the education department of the Generalitat Valenciana. The use of English was revised by John Rawlins.Montalvo Arango, I.; Izquierdo Sebastián, J.; Pérez García, R.; Herrera Fernández, AM. (2014). Water Distribution System Computer-Aided Design by Agent Swarm Optimization. Computer-Aided Civil and Infrastructure Engineering. 29(6):433-448. https://doi.org/10.1111/mice.12062S433448296Adeli, H., & Kumar, S. (1995). Distributed Genetic Algorithm for Structural Optimization. Journal of Aerospace Engineering, 8(3), 156-163. doi:10.1061/(asce)0893-1321(1995)8:3(156)Afshar, M. H., Akbari, M., & Mariño, M. A. (2005). Simultaneous Layout and Size Optimization of Water Distribution Networks: Engineering Approach. Journal of Infrastructure Systems, 11(4), 221-230. doi:10.1061/(asce)1076-0342(2005)11:4(221)Amini, F., Hazaveh, N. K., & Rad, A. A. (2013). Wavelet PSO-Based LQR Algorithm for Optimal Structural Control Using Active Tuned Mass Dampers. Computer-Aided Civil and Infrastructure Engineering, 28(7), 542-557. doi:10.1111/mice.12017Arumugam, M. S., & Rao, M. V. C. (2008). On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems. Applied Soft Computing, 8(1), 324-336. doi:10.1016/j.asoc.2007.01.010Badawy, R., Yassine, A., Heßler, A., Hirsch, B., & Albayrak, S. (2013). A novel multi-agent system utilizing quantum-inspired evolution for demand side management in the future smart grid. Integrated Computer-Aided Engineering, 20(2), 127-141. doi:10.3233/ica-130423Černý, V. (1985). Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications, 45(1), 41-51. doi:10.1007/bf00940812Dandy, G. C., & Engelhardt, M. O. (2006). Multi-Objective Trade-Offs between Cost and Reliability in the Replacement of Water Mains. Journal of Water Resources Planning and Management, 132(2), 79-88. doi:10.1061/(asce)0733-9496(2006)132:2(79)Díaz , J. L. Herrera , M. Izquierdo , J. Montalvo , I. Pérez-García , R. 2008 A particle swarm optimization derivative applied to cluster analysisDorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 26(1), 29-41. doi:10.1109/3477.484436Dridi, L., Parizeau, M., Mailhot, A., & Villeneuve, J.-P. (2008). Using Evolutionary Optimization Techniques for Scheduling Water Pipe Renewal Considering a Short Planning Horizon. Computer-Aided Civil and Infrastructure Engineering, 23(8), 625-635. doi:10.1111/j.1467-8667.2008.00564.xDuan, Q. Y., Gupta, V. K., & Sorooshian, S. (1993). Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications, 76(3), 501-521. doi:10.1007/bf00939380Duchesne, S., Beardsell, G., Villeneuve, J.-P., Toumbou, B., & Bouchard, K. (2012). A Survival Analysis Model for Sewer Pipe Structural Deterioration. Computer-Aided Civil and Infrastructure Engineering, 28(2), 146-160. doi:10.1111/j.1467-8667.2012.00773.xDupont, G., Adam, S., Lecourtier, Y., & Grilheres, B. (2008). Multi objective particle swarm optimization using enhanced dominance and guide selection. International Journal of Computational Intelligence Research, 4(2). doi:10.5019/j.ijcir.2008.134Fougères, A.-J., & Ostrosi, E. (2013). Fuzzy agent-based approach for consensual design synthesis in product configuration. Integrated Computer-Aided Engineering, 20(3), 259-274. doi:10.3233/ica-130434Fuggini, C., Chatzi, E., & Zangani, D. (2012). Combining Genetic Algorithms with a Meso-Scale Approach for System Identification of a Smart Polymeric Textile. Computer-Aided Civil and Infrastructure Engineering, 28(3), 227-245. doi:10.1111/j.1467-8667.2012.00789.xZong Woo Geem, Joong Hoon Kim, & Loganathan, G. V. (2001). A New Heuristic Optimization Algorithm: Harmony Search. SIMULATION, 76(2), 60-68. doi:10.1177/003754970107600201Giustolisi, O., Savic, D., & Kapelan, Z. (2008). Pressure-Driven Demand and Leakage Simulation for Water Distribution Networks. Journal of Hydraulic Engineering, 134(5), 626-635. doi:10.1061/(asce)0733-9429(2008)134:5(626)Goulter, I. C., & Bouchart, F. (1990). Reliability‐Constrained Pipe Network Model. Journal of Hydraulic Engineering, 116(2), 211-229. doi:10.1061/(asce)0733-9429(1990)116:2(211)Goulter, I. C., & Coals, A. V. (1986). Quantitative Approaches to Reliability Assessment in Pipe Networks. Journal of Transportation Engineering, 112(3), 287-301. doi:10.1061/(asce)0733-947x(1986)112:3(287)Gupta, R., & Bhave, P. R. (1994). Reliability Analysis of Water‐Distribution Systems. Journal of Environmental Engineering, 120(2), 447-461. doi:10.1061/(asce)0733-9372(1994)120:2(447)Gutierrez-Garcia, J. O., & Sim, K. M. (2012). Agent-based cloud workflow execution. Integrated Computer-Aided Engineering, 19(1), 39-56. doi:10.3233/ica-2012-0387Herrera, M., Izquierdo, J., Montalvo, I., García-Armengol, J., & Roig, J. V. (2009). Identification of surgical practice patterns using evolutionary cluster analysis. Mathematical and Computer Modelling, 50(5-6), 705-712. doi:10.1016/j.mcm.2008.12.026Hsiao, F.-Y., Wang, S.-H., Wang, W.-C., Wen, C.-P., & Yu, W.-D. (2012). Neuro-Fuzzy Cost Estimation Model Enhanced by Fast Messy Genetic Algorithms for Semiconductor Hookup Construction. Computer-Aided Civil and Infrastructure Engineering, 27(10), 764-781. doi:10.1111/j.1467-8667.2012.00786.xIzquierdo , J. Minciardi , R. Montalvo , I. Robba , M. Tavera , M. 2008a Particle swarm optimization for the biomass supply chain strategic planning 1272 80Izquierdo , J. Montalvo , I. Herrera , M. Pérez-García , R. 2012 A general purpose non-linear optimization framework based on particle swarm optimizationIzquierdo, J., Montalvo, I., Pérez, R., & Fuertes, V. S. (2008). Design optimization of wastewater collection networks by PSO. Computers & Mathematics with Applications, 56(3), 777-784. doi:10.1016/j.camwa.2008.02.007Izquierdo, J., Montalvo, I., Pérez, R., & Fuertes, V. S. (2009). Forecasting pedestrian evacuation times by using swarm intelligence. Physica A: Statistical Mechanics and its Applications, 388(7), 1213-1220. doi:10.1016/j.physa.2008.12.008Izquierdo , J. Montalvo , I. Pérez , R. Tavera , M. 2008b Optimization in water systems: a PSO approach 239 46Jafarkhani, R., & Masri, S. F. (2010). Finite Element Model Updating Using Evolutionary Strategy for Damage Detection. Computer-Aided Civil and Infrastructure Engineering, 26(3), 207-224. doi:10.1111/j.1467-8667.2010.00687.xJanson, S., Merkle, D., & Middendorf, M. (2008). Molecular docking with multi-objective Particle Swarm Optimization. Applied Soft Computing, 8(1), 666-675. doi:10.1016/j.asoc.2007.05.005Kalungi, P., & Tanyimboh, T. T. (2003). Redundancy model for water distribution systems. Reliability Engineering & System Safety, 82(3), 275-286. doi:10.1016/s0951-8320(03)00168-6Keedwell, E., & Khu, S.-T. (2006). Novel Cellular Automata Approach to Optimal Water Distribution Network Design. Journal of Computing in Civil Engineering, 20(1), 49-56. doi:10.1061/(asce)0887-3801(2006)20:1(49)Kennedy , J. Eberhart , R. C. 1995 Particle swarm optimization 1942 48Khomsi, D., Walters, G. A., Thorley, A. R. D., & Ouazar, D. (1996). Reliability Tester for Water-Distribution Networks. Journal of Computing in Civil Engineering, 10(1), 10-19. doi:10.1061/(asce)0887-3801(1996)10:1(10)KIM, H., & ADELI, H. (2001). DISCRETE COST OPTIMIZATION OF COMPOSITE FLOORS USING A FLOATING-POINT GENETIC ALGORITHM. Engineering Optimization, 33(4), 485-501. doi:10.1080/03052150108940930Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671Kleiner, Y., Adams, B. J., & Rogers, J. S. (2001). Water Distribution Network Renewal Planning. Journal of Computing in Civil Engineering, 15(1), 15-26. doi:10.1061/(asce)0887-3801(2001)15:1(15)Martínez-Rodríguez, J. B., Montalvo, I., Izquierdo, J., & Pérez-García, R. (2011). Reliability and Tolerance Comparison in Water Supply Networks. Water Resources Management, 25(5), 1437-1448. doi:10.1007/s11269-010-9753-2Montalvo Arango, I. (s. f.). Diseño óptimo de sistemas de distribución de agua mediante Agent Swarm Optimization. doi:10.4995/thesis/10251/14858Montalvo, I., Izquierdo, J., Pérez-García, R., & Herrera, M. (2010). Improved performance of PSO with self-adaptive parameters for computing the optimal design of Water Supply Systems. Engineering Applications of Artificial Intelligence, 23(5), 727-735. doi:10.1016/j.engappai.2010.01.015Montalvo, I., Izquierdo, J., Pérez, R., & Iglesias, P. L. (2008). A diversity-enriched variant of discrete PSO applied to the design of water distribution networks. Engineering Optimization, 40(7), 655-668. doi:10.1080/03052150802010607Montalvo, I., Izquierdo, J., Pérez, R., & Tung, M. M. (2008). Particle Swarm Optimization applied to the design of water supply systems. Computers & Mathematics with Applications, 56(3), 769-776. doi:10.1016/j.camwa.2008.02.006Montalvo, I., Izquierdo, J., Schwarze, S., & Pérez-García, R. (2010). Multi-objective particle swarm optimization applied to water distribution systems design: An approach with human interaction. Mathematical and Computer Modelling, 52(7-8), 1219-1227. doi:10.1016/j.mcm.2010.02.017Moscato , P. 1989 On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic AlgorithmsNejat, A., & Damnjanovic, I. (2012). Agent-Based Modeling of Behavioral Housing Recovery Following Disasters. Computer-Aided Civil and Infrastructure Engineering, 27(10), 748-763. doi:10.1111/j.1467-8667.2012.00787.xPark, H., & Liebman, J. C. (1993). Redundancy‐Constrained Minimum‐Cost Design of Water‐Distribution Nets. Journal of Water Resources Planning and Management, 119(1), 83-98. doi:10.1061/(asce)0733-9496(1993)119:1(83)Paya, I., Yepes, V., González-Vidosa, F., & Hospitaler, A. (2008). Multiobjective Optimization of Concrete Frames by Simulated Annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8), 596-610. doi:10.1111/j.1467-8667.2008.00561.xPinto, T., Praça, I., Vale, Z., Morais, H., & Sousa, T. M. (2013). Strategic bidding in electricity markets: An agent-based simulator with game theory for scenario analysis. Integrated Computer-Aided Engineering, 20(4), 335-346. doi:10.3233/ica-130438Putha, R., Quadrifoglio, L., & Zechman, E. (2011). Comparing Ant Colony Optimization and Genetic Algorithm Approaches for Solving Traffic Signal Coordination under Oversaturation Conditions. Computer-Aided Civil and Infrastructure Engineering, 27(1), 14-28. doi:10.1111/j.1467-8667.2010.00715.xRaich, A. M., & Liszkai, T. R. (2011). Multi-objective Optimization of Sensor and Excitation Layouts for Frequency Response Function-Based Structural Damage Identification. Computer-Aided Civil and Infrastructure Engineering, 27(2), 95-117. doi:10.1111/j.1467-8667.2011.00726.xRodríguez-Seda, E. J., Stipanović, D. M., & Spong, M. W. (2012). Teleoperation of multi-agent systems with nonuniform control input delays. Integrated Computer-Aided Engineering, 19(2), 125-136. doi:10.3233/ica-2012-0396Saldarriaga , J. G. Bernal , A. Ochoa , S. 2008 Optimized design of water distribution network enlargements using resilience and dissipated power concepts 298 312Sarma, K. C., & Adeli, H. (2000). Fuzzy Genetic Algorithm for Optimization of Steel Structures. Journal of Structural Engineering, 126(5), 596-604. doi:10.1061/(asce)0733-9445(2000)126:5(596)Sgambi, L., Gkoumas, K., & Bontempi, F. (2012). Genetic Algorithms for the Dependability Assurance in the Design of a Long-Span Suspension Bridge. Computer-Aided Civil and Infrastructure Engineering, 27(9), 655-675. doi:10.1111/j.1467-8667.2012.00780.xShafahi, Y., & Bagherian, M. (2012). A Customized Particle Swarm Method to Solve Highway Alignment Optimization Problem. Computer-Aided Civil and Infrastructure Engineering, 28(1), 52-67. doi:10.1111/j.1467-8667.2012.00769.xTanyimboh, T. T., Tabesh, M., & Burrows, R. (2001). Appraisal of Source Head Methods for Calculating Reliability of Water Distribution Networks. Journal of Water Resources Planning and Management, 127(4), 206-213. doi:10.1061/(asce)0733-9496(2001)127:4(206)Tao, H., Zain, J. M., Ahmed, M. M., Abdalla, A. N., & Jing, W. (2012). A wavelet-based particle swarm optimization algorithm for digital image watermarking. Integrated Computer-Aided Engineering, 19(1), 81-91. doi:10.3233/ica-2012-0392Todini, E. (2000). Looped water distribution networks design using a resilience index based heuristic approach. Urban Water, 2(2), 115-122. doi:10.1016/s1462-0758(00)00049-2Vamvakeridou-Lyroudia, L. S., Walters, G. A., & Savic, D. A. (2005). Fuzzy Multiobjective Optimization of Water Distribution Networks. Journal of Water Resources Planning and Management, 131(6), 467-476. doi:10.1061/(asce)0733-9496(2005)131:6(467)Vitins, B. J., & Axhausen, K. W. (2009). Optimization of Large Transport Networks Using the Ant Colony Heuristic. Computer-Aided Civil and Infrastructure Engineering, 24(1), 1-14. doi:10.1111/j.1467-8667.2008.00569.xVrugt, J. A., Gupta, H. V., Bastidas, L. A., Bouten, W., & Sorooshian, S. (2003). Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resources Research, 39(8). doi:10.1029/2002wr001746Vrugt, J. A., Ó Nualláin, B., Robinson, B. A., Bouten, W., Dekker, S. C., & Sloot, P. M. A. (2006). Application of parallel computing to stochastic parameter estimation in environmental models. Computers & Geosciences, 32(8), 1139-1155. doi:10.1016/j.cageo.2005.10.015Vrugt , J. A. Robinson , B. A. 2007 Improved evolutionary search from genetically adaptive multi-search method 104 3 708 11Wu , Z. Y. Wang , R. H. Walski , T. M. Yang , S. Y. Bowdler , D. Baggett , C. C. 2006 Efficient pressure dependent demand model for large water distribution system analysisXie, C., & Waller, S. T. (2011). Optimal Routing with Multiple Objectives: Efficient Algorithm and Application to the Hazardous Materials Transportation Problem. Computer-Aided Civil and Infrastructure Engineering, 27(2), 77-94. doi:10.1111/j.1467-8667.2011.00720.xXu, C., & Goulter, I. C. (1999). Reliability-Based Optimal Design of Water Distribution Networks. Journal of Water Resources Planning and Management, 125(6), 352-362. doi:10.1061/(asce)0733-9496(1999)125:6(352)Zeferino, J. A., Antunes, A. P., & Cunha, M. C. (2009). An Efficient Simulated Annealing Algorithm for Regional Wastewater System Planning. Computer-Aided Civil and Infrastructure Engineering, 24(5), 359-370. doi:10.1111/j.1467-8667.2009.00594.

    Particle swarm optimization with composite particles in dynamic environments

    Get PDF
    This article is placed here with the permission of IEEE - Copyright @ 2010 IEEEIn recent years, there has been a growing interest in the study of particle swarm optimization (PSO) in dynamic environments. This paper presents a new PSO model, called PSO with composite particles (PSO-CP), to address dynamic optimization problems. PSO-CP partitions the swarm into a set of composite particles based on their similarity using a "worst first" principle. Inspired by the composite particle phenomenon in physics, the elementary members in each composite particle interact via a velocity-anisotropic reflection scheme to integrate valuable information for effectively and rapidly finding the promising optima in the search space. Each composite particle maintains the diversity by a scattering operator. In addition, an integral movement strategy is introduced to promote the swarm diversity. Experiments on a typical dynamic test benchmark problem provide a guideline for setting the involved parameters and show that PSO-CP is efficient in comparison with several state-of-the-art PSO algorithms for dynamic optimization problems.This work was supported in part by the Key Program of the National Natural Science Foundation (NNSF) of China under Grant 70931001 and 70771021, the Science Fund for Creative Research Group of the NNSF of China under Grant 60821063 and 70721001, the Ph.D. Programs Foundation of the Ministry of education of China under Grant 200801450008, and by the Engineering and Physical Sciences Research Council of U.K. under Grant EP/E060722/1

    Adaptive particle swarm optimization

    Get PDF
    An adaptive particle swarm optimization (APSO) that features better search efficiency than classical particle swarm optimization (PSO) is presented. More importantly, it can perform a global search over the entire search space with faster convergence speed. The APSO consists of two main steps. First, by evaluating the population distribution and particle fitness, a real-time evolutionary state estimation procedure is performed to identify one of the following four defined evolutionary states, including exploration, exploitation, convergence, and jumping out in each generation. It enables the automatic control of inertia weight, acceleration coefficients, and other algorithmic parameters at run time to improve the search efficiency and convergence speed. Then, an elitist learning strategy is performed when the evolutionary state is classified as convergence state. The strategy will act on the globally best particle to jump out of the likely local optima. The APSO has comprehensively been evaluated on 12 unimodal and multimodal benchmark functions. The effects of parameter adaptation and elitist learning will be studied. Results show that APSO substantially enhances the performance of the PSO paradigm in terms of convergence speed, global optimality, solution accuracy, and algorithm reliability. As APSO introduces two new parameters to the PSO paradigm only, it does not introduce an additional design or implementation complexity

    Emitter Location Finding using Particle Swarm Optimization

    Get PDF
    Using several spatially separated receivers, nowadays positioning techniques, which are implemented to determine the location of the transmitter, are often required for several important disciplines such as military, security, medical, and commercial applications. In this study, localization is carried out by particle swarm optimization using time difference of arrival. In order to increase the positioning accuracy, time difference of arrival averaging based two new methods are proposed. Results are compared with classical algorithms and Cramer-Rao lower bound which is the theoretical limit of the estimation error
    corecore