963 research outputs found

    Leaders and Followers Algorithm for Balanced Transportation Problem

    Get PDF
    Leaders and Followers algorithm is a metaheuristic algorithm which uses two sets of solutions and avoid comparison between random exploratory sample solutions and the best solutions. In this paper, it is used to solve the balanced transportation problem. There are some modifications in the proposed algorithm in order to fit the algorithm to the problem. The proposed algorithm is evaluated using 138 problems. The results are better than the results obtained by other algorithm from previous studies. Overall, Leaders and Followers algorithm has no difficulty in finding optimal solution, even in problems that have large dimension, number of supply and number of demands

    A fuzzy optimization approach for procurement transport operational planning in an automobile supply chain

    Full text link
    We consider a real-world automobile supply chain in which a first-tier supplier serves an assembler and determines its procurement transport planning for a second-tier supplier by using the automobile assembler's demand information, the available capacity of trucks and inventory levels. The proposed fuzzy multi-objective integer linear programming model (FMOILP) improves the transport planning process for material procurement at the first-tier supplier level, which is subject to product groups composed of items that must be ordered together, order lot sizes, fuzzy aspiration levels for inventory and used trucks and uncertain truck maximum available capacities and minimum percentages of demand in stock. Regarding the defuzzification process, we apply two existing methods based on the weighted average method to convert the FMOILP into a crisp MOILP to then apply two different aggregation functions, which we compare, to transform this crisp MOILP into a single objective MILP model. A sensitivity analysis is included to show the impact of the objectives weight vector on the final solutions. The model, based on the full truck load material pick method, provides the quantity of products and number of containers to be loaded per truck and period. An industrial automobile supply chain case study demonstrates the feasibility of applying the proposed model and the solution methodology to a realistic procurement transport planning problem. The results provide lower stock levels and higher occupation of the trucks used to fulfill both demand and minimum inventory requirements than those obtained by the manual spreadsheet-based method. (C) 2014 Elsevier Inc. All rights reserved.This work has been funded partly by the Spanish Ministry of Science and Technology project: Production technology based on the feedback from production, transport and unload planning and the redesign of warehouses decisions in the supply chain (Ref. DPI2010-19977) and by the Universitat Politecnica de Valencia project 'Material Requirement Planning Fourth Generation (MRPIV) (Ref. PAID-05-12)'.Díaz-Madroñero Boluda, FM.; Peidro Payá, D.; Mula, J. (2014). A fuzzy optimization approach for procurement transport operational planning in an automobile supply chain. Applied Mathematical Modelling. 38(23):5705-5725. https://doi.org/10.1016/j.apm.2014.04.053S57055725382

    A Multi-Objective Optimization for Supply Chain Network Using the Bees Algorithm

    Get PDF
    A supply chain is a complex network which involves the products, services and information flows between suppliers and customers. A typical supply chain is composed of different levels, hence, there is a need to optimize the supply chain by finding the optimum configuration of the network in order to get a good compromise between the multi-objectives such as cost minimization and lead-time minimization. There are several multi-objective optimization methods which have been applied to find the optimum solutions set based on the Pareto front line. In this study, a swarm-based optimization method, namely, the bees algorithm is proposed in dealing with the multi-objective supply chain model to find the optimum configuration of a given supply chain problem which minimizes the total cost and the total lead-time. The supply chain problem utilized in this study is taken from literature and several experiments have been conducted in order to show the performance of the proposed model; in addition, the results have been compared to those achieved by the ant colony optimization method. The results show that the proposed bees algorithm is able to achieve better Pareto solutions for the supply chain problem

    Designing a Multistage Supply Chain in Cross-Stage Reverse Logistics Environments: Application of Particle Swarm Optimization Algorithms

    Get PDF
    This study designed a cross-stage reverse logistics course for defective products so that damaged products generated in downstream partners can be directly returned to upstream partners throughout the stages of a supply chain for rework and maintenance. To solve this reverse supply chain design problem, an optimal cross-stage reverse logistics mathematical model was developed. In addition, we developed a genetic algorithm (GA) and three particle swarm optimization (PSO) algorithms: the inertia weight method (PSOA_IWM), VMax method (PSOA_VMM), and constriction factor method (PSOA_CFM), which we employed to find solutions to support this mathematical model. Finally, a real case and five simulative cases with different scopes were used to compare the execution times, convergence times, and objective function values of the four algorithms used to validate the model proposed in this study. Regarding system execution time, the GA consumed more time than the other three PSOs did. Regarding objective function value, the GA, PSOA_IWM, and PSOA_CFM could obtain a lower convergence value than PSOA_VMM could. Finally, PSOA_IWM demonstrated a faster convergence speed than PSOA_VMM, PSOA_CFM, and the GA did

    Application of particle swarm optimisation with backward calculation to solve a fuzzy multi-objective supply chain master planning model

    Full text link
    Traditionally, supply chain planning problems consider variables with uncertainty associated with uncontrolled factors. These factors have been normally modelled by complex methodologies where the seeking solution process often presents high scale of difficulty. This work presents the fuzzy set theory as a tool to model uncertainty in supply chain planning problems and proposes the particle swarm optimisation (PSO) metaheuristics technique combined with a backward calculation as a solution method. The aim of this combination is to present a simple effective method to model uncertainty, while good quality solutions are obtained with metaheuristics due to its capacity to find them with satisfactory computational performance in complex problems, in a relatively short time period.This research is partly supported by the Spanish Ministry of Economy and Competitiveness projects 'Methods and models for operations planning and order management in supply chains characterised by uncertainty in production due to the lack of product uniformity' (PLANGES-FHP) (Ref. DPI2011-23597) and 'Operations design and Management of Global Supply Chains' (GLOBOP) (Ref. DPI2012-38061-C02-01); by the project funded by the Polytechnic University of Valencia entitled 'Quantitative Models for the Design of Socially Responsible Supply Chains under Uncertainty Conditions. Application of Solution Strategies based on Hybrid Metaheuristics' (PAID-06-12); and by the Ministry of Science, Technology and Telecommunications, government of Costa Rica (MICITT), through the incentive program of the National Council for Scientific and Technological Research (CONICIT) (contract No FI-132-2011).Grillo Espinoza, H.; Peidro Payá, D.; Alemany Díaz, MDM.; Mula, J. (2015). Application of particle swarm optimisation with backward calculation to solve a fuzzy multi-objective supply chain master planning model. International Journal of Bio-Inspired Computation. 7(3):157-169. https://doi.org/10.1504/IJBIC.2015.069557S1571697

    Supply chain network design using an enhanced hybrid swarm-based optimization algorithm

    Get PDF
    This is the final version. Available from IGI Global via the DOI in this record. Supply chain network design is one of the most important strategic issues in operations management. The main objective in designing a supply chain is to keep the cost as low as possible. However, the modelling of a supply chain requires more than single-objective such as lead-time minimization, service level maximization, and environmental impact maximization among others. Usually these objectives may cause conflicts such as increasing the service level usually causes a growth in costs. Therefore, the aim should be to find trade-off solutions to satisfy the conflicting objectives. The aim of this chapter is to propose a new method based on a hybrid version of the Bees Algorithm with Slope Angle Computation and Hill Climbing Algorithm to solve a multi-objective supply chain network design problem. A real case from the literature has been selected and solved in order to show the potentiality of the proposed method in solving a large scale combinatorial problem

    Water Distribution System Computer-Aided Design by Agent Swarm Optimization

    Full text link
    Optimal design of water distribution systems (WDS), including the sizing of components, quality control, reliability, renewal and rehabilitation strategies, etc., is a complex problem in water engineering that requires robust methods of optimization. Classical methods of optimization are not well suited for analyzing highly-dimensional, multimodal, non-linear problems, especially given inaccurate, noisy, discrete and complex data. Agent Swarm Optimization (ASO) is a novel paradigm that exploits swarm intelligence and borrows some ideas from multiagent based systems. It is aimed at supporting decisionmaking processes by solving multi-objective optimization problems. ASO offers robustness through a framework where various population-based algorithms co-exist. The ASO framework is described and used to solve the optimal design of WDS. The approach allows engineers to work in parallel with the computational algorithms to force the recruitment of new searching elements, thus contributing to the solution process with expert-based proposals.This work has been developed with the support of the project IDAWAS, DPI2009-11591, of the Spanish Ministry of Education and Science, and ACOMP/2010/146 of the education department of the Generalitat Valenciana. The use of English was revised by John Rawlins.Montalvo Arango, I.; Izquierdo Sebastián, J.; Pérez García, R.; Herrera Fernández, AM. (2014). Water Distribution System Computer-Aided Design by Agent Swarm Optimization. Computer-Aided Civil and Infrastructure Engineering. 29(6):433-448. https://doi.org/10.1111/mice.12062S433448296Adeli, H., & Kumar, S. (1995). Distributed Genetic Algorithm for Structural Optimization. Journal of Aerospace Engineering, 8(3), 156-163. doi:10.1061/(asce)0893-1321(1995)8:3(156)Afshar, M. H., Akbari, M., & Mariño, M. A. (2005). Simultaneous Layout and Size Optimization of Water Distribution Networks: Engineering Approach. Journal of Infrastructure Systems, 11(4), 221-230. doi:10.1061/(asce)1076-0342(2005)11:4(221)Amini, F., Hazaveh, N. K., & Rad, A. A. (2013). Wavelet PSO-Based LQR Algorithm for Optimal Structural Control Using Active Tuned Mass Dampers. Computer-Aided Civil and Infrastructure Engineering, 28(7), 542-557. doi:10.1111/mice.12017Arumugam, M. S., & Rao, M. V. C. (2008). On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems. Applied Soft Computing, 8(1), 324-336. doi:10.1016/j.asoc.2007.01.010Badawy, R., Yassine, A., Heßler, A., Hirsch, B., & Albayrak, S. (2013). A novel multi-agent system utilizing quantum-inspired evolution for demand side management in the future smart grid. Integrated Computer-Aided Engineering, 20(2), 127-141. doi:10.3233/ica-130423Černý, V. (1985). Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications, 45(1), 41-51. doi:10.1007/bf00940812Dandy, G. C., & Engelhardt, M. O. (2006). Multi-Objective Trade-Offs between Cost and Reliability in the Replacement of Water Mains. Journal of Water Resources Planning and Management, 132(2), 79-88. doi:10.1061/(asce)0733-9496(2006)132:2(79)Díaz , J. L. Herrera , M. Izquierdo , J. Montalvo , I. Pérez-García , R. 2008 A particle swarm optimization derivative applied to cluster analysisDorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 26(1), 29-41. doi:10.1109/3477.484436Dridi, L., Parizeau, M., Mailhot, A., & Villeneuve, J.-P. (2008). Using Evolutionary Optimization Techniques for Scheduling Water Pipe Renewal Considering a Short Planning Horizon. Computer-Aided Civil and Infrastructure Engineering, 23(8), 625-635. doi:10.1111/j.1467-8667.2008.00564.xDuan, Q. Y., Gupta, V. K., & Sorooshian, S. (1993). Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications, 76(3), 501-521. doi:10.1007/bf00939380Duchesne, S., Beardsell, G., Villeneuve, J.-P., Toumbou, B., & Bouchard, K. (2012). A Survival Analysis Model for Sewer Pipe Structural Deterioration. Computer-Aided Civil and Infrastructure Engineering, 28(2), 146-160. doi:10.1111/j.1467-8667.2012.00773.xDupont, G., Adam, S., Lecourtier, Y., & Grilheres, B. (2008). Multi objective particle swarm optimization using enhanced dominance and guide selection. International Journal of Computational Intelligence Research, 4(2). doi:10.5019/j.ijcir.2008.134Fougères, A.-J., & Ostrosi, E. (2013). Fuzzy agent-based approach for consensual design synthesis in product configuration. Integrated Computer-Aided Engineering, 20(3), 259-274. doi:10.3233/ica-130434Fuggini, C., Chatzi, E., & Zangani, D. (2012). Combining Genetic Algorithms with a Meso-Scale Approach for System Identification of a Smart Polymeric Textile. Computer-Aided Civil and Infrastructure Engineering, 28(3), 227-245. doi:10.1111/j.1467-8667.2012.00789.xZong Woo Geem, Joong Hoon Kim, & Loganathan, G. V. (2001). A New Heuristic Optimization Algorithm: Harmony Search. SIMULATION, 76(2), 60-68. doi:10.1177/003754970107600201Giustolisi, O., Savic, D., & Kapelan, Z. (2008). Pressure-Driven Demand and Leakage Simulation for Water Distribution Networks. Journal of Hydraulic Engineering, 134(5), 626-635. doi:10.1061/(asce)0733-9429(2008)134:5(626)Goulter, I. C., & Bouchart, F. (1990). Reliability‐Constrained Pipe Network Model. Journal of Hydraulic Engineering, 116(2), 211-229. doi:10.1061/(asce)0733-9429(1990)116:2(211)Goulter, I. C., & Coals, A. V. (1986). Quantitative Approaches to Reliability Assessment in Pipe Networks. Journal of Transportation Engineering, 112(3), 287-301. doi:10.1061/(asce)0733-947x(1986)112:3(287)Gupta, R., & Bhave, P. R. (1994). Reliability Analysis of Water‐Distribution Systems. Journal of Environmental Engineering, 120(2), 447-461. doi:10.1061/(asce)0733-9372(1994)120:2(447)Gutierrez-Garcia, J. O., & Sim, K. M. (2012). Agent-based cloud workflow execution. Integrated Computer-Aided Engineering, 19(1), 39-56. doi:10.3233/ica-2012-0387Herrera, M., Izquierdo, J., Montalvo, I., García-Armengol, J., & Roig, J. V. (2009). Identification of surgical practice patterns using evolutionary cluster analysis. Mathematical and Computer Modelling, 50(5-6), 705-712. doi:10.1016/j.mcm.2008.12.026Hsiao, F.-Y., Wang, S.-H., Wang, W.-C., Wen, C.-P., & Yu, W.-D. (2012). Neuro-Fuzzy Cost Estimation Model Enhanced by Fast Messy Genetic Algorithms for Semiconductor Hookup Construction. Computer-Aided Civil and Infrastructure Engineering, 27(10), 764-781. doi:10.1111/j.1467-8667.2012.00786.xIzquierdo , J. Minciardi , R. Montalvo , I. Robba , M. Tavera , M. 2008a Particle swarm optimization for the biomass supply chain strategic planning 1272 80Izquierdo , J. Montalvo , I. Herrera , M. Pérez-García , R. 2012 A general purpose non-linear optimization framework based on particle swarm optimizationIzquierdo, J., Montalvo, I., Pérez, R., & Fuertes, V. S. (2008). Design optimization of wastewater collection networks by PSO. Computers & Mathematics with Applications, 56(3), 777-784. doi:10.1016/j.camwa.2008.02.007Izquierdo, J., Montalvo, I., Pérez, R., & Fuertes, V. S. (2009). Forecasting pedestrian evacuation times by using swarm intelligence. Physica A: Statistical Mechanics and its Applications, 388(7), 1213-1220. doi:10.1016/j.physa.2008.12.008Izquierdo , J. Montalvo , I. Pérez , R. Tavera , M. 2008b Optimization in water systems: a PSO approach 239 46Jafarkhani, R., & Masri, S. F. (2010). Finite Element Model Updating Using Evolutionary Strategy for Damage Detection. Computer-Aided Civil and Infrastructure Engineering, 26(3), 207-224. doi:10.1111/j.1467-8667.2010.00687.xJanson, S., Merkle, D., & Middendorf, M. (2008). Molecular docking with multi-objective Particle Swarm Optimization. Applied Soft Computing, 8(1), 666-675. doi:10.1016/j.asoc.2007.05.005Kalungi, P., & Tanyimboh, T. T. (2003). Redundancy model for water distribution systems. Reliability Engineering & System Safety, 82(3), 275-286. doi:10.1016/s0951-8320(03)00168-6Keedwell, E., & Khu, S.-T. (2006). Novel Cellular Automata Approach to Optimal Water Distribution Network Design. Journal of Computing in Civil Engineering, 20(1), 49-56. doi:10.1061/(asce)0887-3801(2006)20:1(49)Kennedy , J. Eberhart , R. C. 1995 Particle swarm optimization 1942 48Khomsi, D., Walters, G. A., Thorley, A. R. D., & Ouazar, D. (1996). Reliability Tester for Water-Distribution Networks. Journal of Computing in Civil Engineering, 10(1), 10-19. doi:10.1061/(asce)0887-3801(1996)10:1(10)KIM, H., & ADELI, H. (2001). DISCRETE COST OPTIMIZATION OF COMPOSITE FLOORS USING A FLOATING-POINT GENETIC ALGORITHM. Engineering Optimization, 33(4), 485-501. doi:10.1080/03052150108940930Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671Kleiner, Y., Adams, B. J., & Rogers, J. S. (2001). Water Distribution Network Renewal Planning. Journal of Computing in Civil Engineering, 15(1), 15-26. doi:10.1061/(asce)0887-3801(2001)15:1(15)Martínez-Rodríguez, J. B., Montalvo, I., Izquierdo, J., & Pérez-García, R. (2011). Reliability and Tolerance Comparison in Water Supply Networks. Water Resources Management, 25(5), 1437-1448. doi:10.1007/s11269-010-9753-2Montalvo Arango, I. (s. f.). Diseño óptimo de sistemas de distribución de agua mediante Agent Swarm Optimization. doi:10.4995/thesis/10251/14858Montalvo, I., Izquierdo, J., Pérez-García, R., & Herrera, M. (2010). Improved performance of PSO with self-adaptive parameters for computing the optimal design of Water Supply Systems. Engineering Applications of Artificial Intelligence, 23(5), 727-735. doi:10.1016/j.engappai.2010.01.015Montalvo, I., Izquierdo, J., Pérez, R., & Iglesias, P. L. (2008). A diversity-enriched variant of discrete PSO applied to the design of water distribution networks. Engineering Optimization, 40(7), 655-668. doi:10.1080/03052150802010607Montalvo, I., Izquierdo, J., Pérez, R., & Tung, M. M. (2008). Particle Swarm Optimization applied to the design of water supply systems. Computers & Mathematics with Applications, 56(3), 769-776. doi:10.1016/j.camwa.2008.02.006Montalvo, I., Izquierdo, J., Schwarze, S., & Pérez-García, R. (2010). Multi-objective particle swarm optimization applied to water distribution systems design: An approach with human interaction. Mathematical and Computer Modelling, 52(7-8), 1219-1227. doi:10.1016/j.mcm.2010.02.017Moscato , P. 1989 On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic AlgorithmsNejat, A., & Damnjanovic, I. (2012). Agent-Based Modeling of Behavioral Housing Recovery Following Disasters. Computer-Aided Civil and Infrastructure Engineering, 27(10), 748-763. doi:10.1111/j.1467-8667.2012.00787.xPark, H., & Liebman, J. C. (1993). Redundancy‐Constrained Minimum‐Cost Design of Water‐Distribution Nets. Journal of Water Resources Planning and Management, 119(1), 83-98. doi:10.1061/(asce)0733-9496(1993)119:1(83)Paya, I., Yepes, V., González-Vidosa, F., & Hospitaler, A. (2008). Multiobjective Optimization of Concrete Frames by Simulated Annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8), 596-610. doi:10.1111/j.1467-8667.2008.00561.xPinto, T., Praça, I., Vale, Z., Morais, H., & Sousa, T. M. (2013). Strategic bidding in electricity markets: An agent-based simulator with game theory for scenario analysis. Integrated Computer-Aided Engineering, 20(4), 335-346. doi:10.3233/ica-130438Putha, R., Quadrifoglio, L., & Zechman, E. (2011). Comparing Ant Colony Optimization and Genetic Algorithm Approaches for Solving Traffic Signal Coordination under Oversaturation Conditions. Computer-Aided Civil and Infrastructure Engineering, 27(1), 14-28. doi:10.1111/j.1467-8667.2010.00715.xRaich, A. M., & Liszkai, T. R. (2011). Multi-objective Optimization of Sensor and Excitation Layouts for Frequency Response Function-Based Structural Damage Identification. Computer-Aided Civil and Infrastructure Engineering, 27(2), 95-117. doi:10.1111/j.1467-8667.2011.00726.xRodríguez-Seda, E. J., Stipanović, D. M., & Spong, M. W. (2012). Teleoperation of multi-agent systems with nonuniform control input delays. Integrated Computer-Aided Engineering, 19(2), 125-136. doi:10.3233/ica-2012-0396Saldarriaga , J. G. Bernal , A. Ochoa , S. 2008 Optimized design of water distribution network enlargements using resilience and dissipated power concepts 298 312Sarma, K. C., & Adeli, H. (2000). Fuzzy Genetic Algorithm for Optimization of Steel Structures. Journal of Structural Engineering, 126(5), 596-604. doi:10.1061/(asce)0733-9445(2000)126:5(596)Sgambi, L., Gkoumas, K., & Bontempi, F. (2012). Genetic Algorithms for the Dependability Assurance in the Design of a Long-Span Suspension Bridge. Computer-Aided Civil and Infrastructure Engineering, 27(9), 655-675. doi:10.1111/j.1467-8667.2012.00780.xShafahi, Y., & Bagherian, M. (2012). A Customized Particle Swarm Method to Solve Highway Alignment Optimization Problem. Computer-Aided Civil and Infrastructure Engineering, 28(1), 52-67. doi:10.1111/j.1467-8667.2012.00769.xTanyimboh, T. T., Tabesh, M., & Burrows, R. (2001). Appraisal of Source Head Methods for Calculating Reliability of Water Distribution Networks. Journal of Water Resources Planning and Management, 127(4), 206-213. doi:10.1061/(asce)0733-9496(2001)127:4(206)Tao, H., Zain, J. M., Ahmed, M. M., Abdalla, A. N., & Jing, W. (2012). A wavelet-based particle swarm optimization algorithm for digital image watermarking. Integrated Computer-Aided Engineering, 19(1), 81-91. doi:10.3233/ica-2012-0392Todini, E. (2000). Looped water distribution networks design using a resilience index based heuristic approach. Urban Water, 2(2), 115-122. doi:10.1016/s1462-0758(00)00049-2Vamvakeridou-Lyroudia, L. S., Walters, G. A., & Savic, D. A. (2005). Fuzzy Multiobjective Optimization of Water Distribution Networks. Journal of Water Resources Planning and Management, 131(6), 467-476. doi:10.1061/(asce)0733-9496(2005)131:6(467)Vitins, B. J., & Axhausen, K. W. (2009). Optimization of Large Transport Networks Using the Ant Colony Heuristic. Computer-Aided Civil and Infrastructure Engineering, 24(1), 1-14. doi:10.1111/j.1467-8667.2008.00569.xVrugt, J. A., Gupta, H. V., Bastidas, L. A., Bouten, W., & Sorooshian, S. (2003). Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resources Research, 39(8). doi:10.1029/2002wr001746Vrugt, J. A., Ó Nualláin, B., Robinson, B. A., Bouten, W., Dekker, S. C., & Sloot, P. M. A. (2006). Application of parallel computing to stochastic parameter estimation in environmental models. Computers & Geosciences, 32(8), 1139-1155. doi:10.1016/j.cageo.2005.10.015Vrugt , J. A. Robinson , B. A. 2007 Improved evolutionary search from genetically adaptive multi-search method 104 3 708 11Wu , Z. Y. Wang , R. H. Walski , T. M. Yang , S. Y. Bowdler , D. Baggett , C. C. 2006 Efficient pressure dependent demand model for large water distribution system analysisXie, C., & Waller, S. T. (2011). Optimal Routing with Multiple Objectives: Efficient Algorithm and Application to the Hazardous Materials Transportation Problem. Computer-Aided Civil and Infrastructure Engineering, 27(2), 77-94. doi:10.1111/j.1467-8667.2011.00720.xXu, C., & Goulter, I. C. (1999). Reliability-Based Optimal Design of Water Distribution Networks. Journal of Water Resources Planning and Management, 125(6), 352-362. doi:10.1061/(asce)0733-9496(1999)125:6(352)Zeferino, J. A., Antunes, A. P., & Cunha, M. C. (2009). An Efficient Simulated Annealing Algorithm for Regional Wastewater System Planning. Computer-Aided Civil and Infrastructure Engineering, 24(5), 359-370. doi:10.1111/j.1467-8667.2009.00594.

    Partner selection in green supply chains using PSO – a practical approach

    Get PDF
    Partner selection is crucial to green supply chain management as the focal firm is responsible for the environmental performance of the whole supply chain. The construction of appropriate selection criteria is an essential, but often neglected pre-requisite in the partner selection process. This paper proposes a three-stage model that combines Dempster-Shafer belief acceptability theory and particle swarm optimization technique for the first time in this application. This enables optimization of both effectiveness, in its consideration of the inter-dependence of a broad range of quantitative and qualitative selection criteria, and efficiency in its use of scarce resources during the criteria construction process to be achieved simultaneously. This also enables both operational and strategic attributes can be selected at different levels of hierarchy criteria in different decision-making environments. The practical efficacy of the model is demonstrated by an application in Company ABC, a large Chinese electronic equipment and instrument manufacturer

    On the Complexities of the Design of Water Distribution Networks

    Full text link
    Water supply is one of the most recognizable and important public services contributing to quality of life. Water distribution networks WDNs are extremely complex assets. A number of complex tasks, such as design, planning, operation, maintenance, and management, are inherently associated with such networks. In this paper, we focus on the design of a WDN, which is a wide and open problem in hydraulic engineering. This problem is a large-scale combinatorial, nonlinear, nonconvex, multiobjective optimization problem, involving various types of decision variables and many complex implicit constraints. To handle this problem, we provide a synergetic association between swarm intelligence and multiagent systems where human interaction is also enabled. This results in a powerful collaborative system for finding solutions to such a complex hydraulic engineering problem. All the ingredients have been integrated into a software tool that has also been shown to efficiently solve problems from other engineering fields.This work has been developed with the support of the project IDAWAS, DPI2009-11591, of the Direccion General de Investigacion of the Ministerio de Educacion y Ciencia, and ACOMP/2010/146 of the Conselleria d'Educacio of the Generalitat Valenciana. The first author is also indebted to the Universitat Politecnica de Valencia for the sabbatical leave granted during the first semester of 2011. The use of English in this paper was revised by John Rawlins.Izquierdo Sebastián, J.; Montalvo Arango, I.; Pérez García, R.; Matías, A. (2012). On the Complexities of the Design of Water Distribution Networks. Mathematical Problems in Engineering. 2012:1-25. https://doi.org/10.1155/2012/9479611252012Goulter, I. C., & Coals, A. V. (1986). Quantitative Approaches to Reliability Assessment in Pipe Networks. Journal of Transportation Engineering, 112(3), 287-301. doi:10.1061/(asce)0733-947x(1986)112:3(287)Goulter, I. C., & Bouchart, F. (1990). Reliability‐Constrained Pipe Network Model. Journal of Hydraulic Engineering, 116(2), 211-229. doi:10.1061/(asce)0733-9429(1990)116:2(211)Kleiner, Y., Adams, B. J., & Rogers, J. S. (2001). Water Distribution Network Renewal Planning. Journal of Computing in Civil Engineering, 15(1), 15-26. doi:10.1061/(asce)0887-3801(2001)15:1(15)Dandy, G. C., & Engelhardt, M. O. (2006). Multi-Objective Trade-Offs between Cost and Reliability in the Replacement of Water Mains. Journal of Water Resources Planning and Management, 132(2), 79-88. doi:10.1061/(asce)0733-9496(2006)132:2(79)Izquierdo, J., Pérez, R., & Iglesias, P. L. (2004). Mathematical models and methods in the water industry. Mathematical and Computer Modelling, 39(11-12), 1353-1374. doi:10.1016/j.mcm.2004.06.012Giustolisi, O., Savic, D., & Kapelan, Z. (2008). Pressure-Driven Demand and Leakage Simulation for Water Distribution Networks. Journal of Hydraulic Engineering, 134(5), 626-635. doi:10.1061/(asce)0733-9429(2008)134:5(626)Montalvo, I., Izquierdo, J., Pérez, R., & Tung, M. M. (2008). Particle Swarm Optimization applied to the design of water supply systems. Computers & Mathematics with Applications, 56(3), 769-776. doi:10.1016/j.camwa.2008.02.006Montalvo, I., Izquierdo, J., Pérez, R., & Iglesias, P. L. (2008). A diversity-enriched variant of discrete PSO applied to the design of water distribution networks. Engineering Optimization, 40(7), 655-668. doi:10.1080/03052150802010607Montalvo, I., Izquierdo, J., Pérez-García, R., & Herrera, M. (2010). Improved performance of PSO with self-adaptive parameters for computing the optimal design of Water Supply Systems. Engineering Applications of Artificial Intelligence, 23(5), 727-735. doi:10.1016/j.engappai.2010.01.015Martínez, J. B. (2010). Cost and reliability comparison between branched and looped water supply networks. Journal of Hydroinformatics, 12(2), 150-160. doi:10.2166/hydro.2009.080Goulter, I. C. (1992). Systems Analysis in Water‐Distribution Network Design: From Theory to Practice. Journal of Water Resources Planning and Management, 118(3), 238-248. doi:10.1061/(asce)0733-9496(1992)118:3(238)Park, H., & Liebman, J. C. (1993). Redundancy‐Constrained Minimum‐Cost Design of Water‐Distribution Nets. Journal of Water Resources Planning and Management, 119(1), 83-98. doi:10.1061/(asce)0733-9496(1993)119:1(83)Khomsi, D., Walters, G. A., Thorley, A. R. D., & Ouazar, D. (1996). Reliability Tester for Water-Distribution Networks. Journal of Computing in Civil Engineering, 10(1), 10-19. doi:10.1061/(asce)0887-3801(1996)10:1(10)Tanyimboh, T. T., Tabesh, M., & Burrows, R. (2001). Appraisal of Source Head Methods for Calculating Reliability of Water Distribution Networks. Journal of Water Resources Planning and Management, 127(4), 206-213. doi:10.1061/(asce)0733-9496(2001)127:4(206)Kalungi, P., & Tanyimboh, T. T. (2003). Redundancy model for water distribution systems. Reliability Engineering & System Safety, 82(3), 275-286. doi:10.1016/s0951-8320(03)00168-6Morgan, D. R., & Goulter, I. C. (1985). Optimal urban water distribution design. Water Resources Research, 21(5), 642-652. doi:10.1029/wr021i005p00642Walters, G. A., & Knezevic, J. (1989). Discussion of « Reliability‐Based Optimization Model for Water Distribution Systems » by Yu‐Chun Su, Larry W. Mays, Ning Duan, and Kevin E. Lansey (December, 1987, Vol. 113, No. 12). Journal of Hydraulic Engineering, 115(8), 1157-1158. doi:10.1061/(asce)0733-9429(1989)115:8(1157)LOGANATHAN, G. V., SHERALI, H. D., & SHAH, M. P. (1990). A TWO-PHASE NETWORK DESIGN HEURISTIC FOR MINIMUM COST WATER DISTRIBUTION SYSTEMS UNDER A RELIABILITY CONSTRAINT. Engineering Optimization, 15(4), 311-336. doi:10.1080/03052159008941160Bouchart, F., & Goulter, I. (1991). Reliability Improvements in Design of Water Distribution Networks Recognizing Valve Location. Water Resources Research, 27(12), 3029-3040. doi:10.1029/91wr00590Gupta, R., & Bhave, P. R. (1994). Reliability Analysis of Water‐Distribution Systems. Journal of Environmental Engineering, 120(2), 447-461. doi:10.1061/(asce)0733-9372(1994)120:2(447)Xu, C., & Goulter, I. C. (1999). Reliability-Based Optimal Design of Water Distribution Networks. Journal of Water Resources Planning and Management, 125(6), 352-362. doi:10.1061/(asce)0733-9496(1999)125:6(352)Su, Y., Mays, L. W., Duan, N., & Lansey, K. E. (1987). Reliability‐Based Optimization Model for Water Distribution Systems. Journal of Hydraulic Engineering, 113(12), 1539-1556. doi:10.1061/(asce)0733-9429(1987)113:12(1539)Cullinane, M. J., Lansey, K. E., & Mays, L. W. (1992). Optimization‐Availability‐Based Design of Water‐Distribution Networks. Journal of Hydraulic Engineering, 118(3), 420-441. doi:10.1061/(asce)0733-9429(1992)118:3(420)Vamvakeridou-Lyroudia, L. S., Walters, G. A., & Savic, D. A. (2005). Fuzzy Multiobjective Optimization of Water Distribution Networks. Journal of Water Resources Planning and Management, 131(6), 467-476. doi:10.1061/(asce)0733-9496(2005)131:6(467)Montalvo, I., Izquierdo, J., Schwarze, S., & Pérez-García, R. (2010). Multi-objective particle swarm optimization applied to water distribution systems design: An approach with human interaction. Mathematical and Computer Modelling, 52(7-8), 1219-1227. doi:10.1016/j.mcm.2010.02.017Izquierdo, J., Montalvo, I., Pérez, R., & Fuertes, V. S. (2008). Design optimization of wastewater collection networks by PSO. Computers & Mathematics with Applications, 56(3), 777-784. doi:10.1016/j.camwa.2008.02.007Dong, Y., Tang, J., Xu, B., & Wang, D. (2005). An application of swarm optimization to nonlinear programming. Computers & Mathematics with Applications, 49(11-12), 1655-1668. doi:10.1016/j.camwa.2005.02.006Jin, Y.-X., Cheng, H.-Z., Yan, J., & Zhang, L. (2007). New discrete method for particle swarm optimization and its application in transmission network expansion planning. Electric Power Systems Research, 77(3-4), 227-233. doi:10.1016/j.epsr.2006.02.016Arumugam, M. S., & Rao, M. V. C. (2008). On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems. Applied Soft Computing, 8(1), 324-336. doi:10.1016/j.asoc.2007.01.010Izquierdo, J., Montalvo, I., Pérez, R., & Fuertes, V. S. (2009). Forecasting pedestrian evacuation times by using swarm intelligence. Physica A: Statistical Mechanics and its Applications, 388(7), 1213-1220. doi:10.1016/j.physa.2008.12.008Herrera, M., Izquierdo, J., Montalvo, I., García-Armengol, J., & Roig, J. V. (2009). Identification of surgical practice patterns using evolutionary cluster analysis. Mathematical and Computer Modelling, 50(5-6), 705-712. doi:10.1016/j.mcm.2008.12.026Molina, J., Santana, L. V., Hernández-Díaz, A. G., Coello Coello, C. A., & Caballero, R. (2009). g-dominance: Reference point based dominance for multiobjective metaheuristics. European Journal of Operational Research, 197(2), 685-692. doi:10.1016/j.ejor.2008.07.01510.1029/89WR02879. (2010). Water Resources Research. doi:10.1029/89wr02879Savic, D. A., & Walters, G. A. (1997). Genetic Algorithms for Least-Cost Design of Water Distribution Networks. Journal of Water Resources Planning and Management, 123(2), 67-77. doi:10.1061/(asce)0733-9496(1997)123:2(67)Zecchin, A. C., Simpson, A. R., Maier, H. R., & Nixon, J. B. (2005). Parametric Study for an Ant Algorithm Applied to Water Distribution System Optimization. IEEE Transactions on Evolutionary Computation, 9(2), 175-191. doi:10.1109/tevc.2005.844168Yurong Liu, Zidong Wang, Jinling Liang, & Xiaohui Liu. (2009). Stability and Synchronization of Discrete-Time Markovian Jumping Neural Networks With Mixed Mode-Dependent Time Delays. IEEE Transactions on Neural Networks, 20(7), 1102-1116. doi:10.1109/tnn.2009.2016210Jinling Liang, Zidong Wang, & Xiaohui Liu. (2009). State Estimation for Coupled Uncertain Stochastic Networks With Missing Measurements and Time-Varying Delays: The Discrete-Time Case. IEEE Transactions on Neural Networks, 20(5), 781-793. doi:10.1109/tnn.2009.2013240Zidong Wang, Yao Wang, & Yurong Liu. (2010). Global Synchronization for Discrete-Time Stochastic Complex Networks With Randomly Occurred Nonlinearities and Mixed Time Delays. IEEE Transactions on Neural Networks, 21(1), 11-25. doi:10.1109/tnn.2009.2033599Bo Shen, Zidong Wang, & Xiaohui Liu. (2011). Bounded HH_{\infty} Synchronization and State Estimation for Discrete Time-Varying Stochastic Complex Networks Over a Finite Horizon. IEEE Transactions on Neural Networks, 22(1), 145-157. doi:10.1109/tnn.2010.209066

    Optimal Allocation Of Distributed Renewable Energy Sources In Power Distribution Networks

    Get PDF
    In this dissertation study, various methods for optimum allocation of renewable distributed generators (DGs) in both balanced and unbalanced distribution networks have been proposed, developed, and tested. These methods were developed with an objective of maximizing several advantages of DG integration into the current distribution system infrastructure. The first method addressed the optimal sitting and sizing of DGs for minimum distribution power losses and maximum voltage profile improvement of distribution feeders. The proposed method was validated by comparing the results of a balanced distribution system with those reported in the literature. This method was then implemented in a co-simulation environment with Electric Power Research Institute\u27s (EPRI) OpenDSS program to solve a three phase optimal power flow (TOPF) problem for optimal location and sizing of multiple DGs in an unbalanced IEEE-123 node distribution network. The results from this work showed that the better loss reduction can be achieved in less computational time compared to the repeated load flow method. The second and third methods were developed with the goal of maximizing the reliability of distribution networks by optimally sitting and sizing DGs and reclosers in a distribution network. The second method focused on optimal allocation of DGs and reclosers with an objective of improving reliability indices while the third method demonstrated the cost based reliability evaluation. These methods were first verified by comparing the results obtained in a balanced network with those reported in literature and then implemented on a multi-phase unbalanced network. Results indicated that optimizing reclosers and DGs based on the reliability indices increases the total cost incurred by utilities. Likewise, when reclosers and DG were allocated to reduce the total cost, the reliability of the distribution system decreased. The fourth method was developed to reduce the total cost incurred by utilities while integrating DGs in a distribution network. Various significant issues like capital cost, operation and maintenance cost, customer service interruption cost, cost of the power purchased from fossil fuel based power plants, savings due to the reduction in distribution power losses, and savings on pollutant emissions were included in this method. Results indicated that integrating DGs to meet the projected growth in demand provides the maximum return on the investment. Additionally, during this project work an equivalent circuit model of a 1.2 kW PEM fuel cell was also developed and verified using electro impedance spectroscopy. The proposed model behaved similar to the actual fuel cell performance under similar loading conditions. Furthermore, an electrical interface between the geothermal power plant and an electric gird was also developed and simulated. The developed model successfully eliminated major issues that might cause instability in the power grid. Furthermore, a case study on the evaluation of geothermal potential has been presented
    corecore