251 research outputs found

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    Study of Cooperative Control System for Multiple Mobile Robots Using Particle Swarm Optimization

    Get PDF
    The idea of using multiple mobile robots for tracking targets in an unknown environment can be realized with Particle Swarm Optimization proposed by Kennedy and Eberhart in 1995. The actual implementation of an efficient algorithm like Particle Swarm Optimization (PSO) is required when robots need to avoid the randomly placed obstacles in unknown environment and reach the target point. However, ordinary methods of obstacle avoidance have not proven good results in route planning. PSO is a self-adaptive population-based method in which behavior of the swarm is iteratively generated from the combination of social and cognitive behaviors and is an effective technique for collective robotic search problem. When PSO is used for exploration, this algorithm enables robots to travel on trajectories that lead to total swarm convergence on some target

    Cooperative localisation in underwater robotic swarms for ocean bottom seismic imaging.

    Get PDF
    Spatial information must be collected alongside the data modality of interest in wide variety of sub-sea applications, such as deep sea exploration, environmental monitoring, geological and ecological research, and samples collection. Ocean-bottom seismic surveys are vital for oil and gas exploration, and for productivity enhancement of an existing production facility. Ocean-bottom seismic sensors are deployed on the seabed to acquire those surveys. Node deployment methods used in industry today are costly, time-consuming and unusable in deep oceans. This study proposes the autonomous deployment of ocean-bottom seismic nodes, implemented by a swarm of Autonomous Underwater Vehicles (AUVs). In autonomous deployment of ocean-bottom seismic nodes, a swarm of sensor-equipped AUVs are deployed to achieve ocean-bottom seismic imaging through collaboration and communication. However, the severely limited bandwidth of underwater acoustic communications and the high cost of maritime assets limit the number of AUVs that can be deployed for experiments. A holistic fuzzy-based localisation framework for large underwater robotic swarms (i.e. with hundreds of AUVs) to dynamically fuse multiple position estimates of an autonomous underwater vehicle is proposed. Simplicity, exibility and scalability are the main three advantages inherent in the proposed localisation framework, when compared to other traditional and commonly adopted underwater localisation methods, such as the Extended Kalman Filter. The proposed fuzzy-based localisation algorithm improves the entire swarm mean localisation error and standard deviation (by 16.53% and 35.17% respectively) at a swarm size of 150 AUVs when compared to the Extended Kalman Filter based localisation with round-robin scheduling. The proposed fuzzy based localisation method requires fuzzy rules and fuzzy set parameters tuning, if the deployment scenario is changed. Therefore a cooperative localisation scheme that relies on a scalar localisation confidence value is proposed. A swarm subset is navigationally aided by ultra-short baseline and a swarm subset (i.e. navigation beacons) is configured to broadcast navigation aids (i.e. range-only), once their confidence values are higher than a predetermined confidence threshold. The confidence value and navigation beacons subset size are two key parameters for the proposed algorithm, so that they are optimised using the evolutionary multi-objective optimisation algorithm NSGA-II to enhance its localisation performance. Confidence value-based localisation is proposed to control the cooperation dynamics among the swarm agents, in terms of aiding acoustic exteroceptive sensors. Given the error characteristics of a commercially available ultra-short baseline system and the covariance matrix of a trilaterated underwater vehicle position, dead reckoning navigation - aided by Extended Kalman Filter-based acoustic exteroceptive sensors - is performed and controlled by the vehicle's confidence value. The proposed confidence-based localisation algorithm has significantly improved the entire swarm mean localisation error when compared to the fuzzy-based and round-robin Extended Kalman Filter-based localisation methods (by 67.10% and 59.28% respectively, at a swarm size of 150 AUVs). The proposed fuzzy-based and confidence-based localisation algorithms for cooperative underwater robotic swarms are validated on a co-simulation platform. A physics-based co-simulation platform that considers an environment's hydrodynamics, industrial grade inertial measurement unit and underwater acoustic communications characteristics is implemented for validation and optimisation purposes

    A field-based computing approach to sensing-driven clustering in robot swarms

    Get PDF
    Swarm intelligence leverages collective behaviours emerging from interaction and activity of several “simple” agents to solve problems in various environments. One problem of interest in large swarms featuring a variety of sub-goals is swarm clustering, where the individuals of a swarm are assigned or choose to belong to zero or more groups, also called clusters. In this work, we address the sensing-based swarm clustering problem, where clusters are defined based on both the values sensed from the environment and the spatial distribution of the values and the agents. Moreover, we address it in a setting characterised by decentralisation of computation and interaction, and dynamicity of values and mobility of agents. For the solution, we propose to use the field-based computing paradigm, where computation and interaction are expressed in terms of a functional manipulation of fields, distributed and evolving data structures mapping each individual of the system to values over time. We devise a solution to sensing-based swarm clustering leveraging multiple concurrent field computations with limited domain and evaluate the approach experimentally by means of simulations, showing that the programmed swarms form clusters that well reflect the underlying environmental phenomena dynamics

    A comprehensive survey on cultural algorithms

    Get PDF
    Peer reviewedPostprin

    Unmanned Aerial Vehicles (UAVs): Collision Avoidance Systems and Approaches

    Get PDF
    Moving towards autonomy, unmanned vehicles rely heavily on state-of-the-art collision avoidance systems (CAS). A lot of work is being done to make the CAS as safe and reliable as possible, necessitating a comparative study of the recent work in this important area. The paper provides a comprehensive review of collision avoidance strategies used for unmanned vehicles, with the main emphasis on unmanned aerial vehicles (UAV). It is an in-depth survey of different collision avoidance techniques that are categorically explained along with a comparative analysis of the considered approaches w.r.t. different scenarios and technical aspects. This also includes a discussion on the use of different types of sensors for collision avoidance in the context of UAVs
    corecore