3,523 research outputs found

    Apar-T: code, validation, and physical interpretation of particle-in-cell results

    Full text link
    We present the parallel particle-in-cell (PIC) code Apar-T and, more importantly, address the fundamental question of the relations between the PIC model, the Vlasov-Maxwell theory, and real plasmas. First, we present four validation tests: spectra from simulations of thermal plasmas, linear growth rates of the relativistic tearing instability and of the filamentation instability, and non-linear filamentation merging phase. For the filamentation instability we show that the effective growth rates measured on the total energy can differ by more than 50% from the linear cold predictions and from the fastest modes of the simulation. Second, we detail a new method for initial loading of Maxwell-J\"uttner particle distributions with relativistic bulk velocity and relativistic temperature, and explain why the traditional method with individual particle boosting fails. Third, we scrutinize the question of what description of physical plasmas is obtained by PIC models. These models rely on two building blocks: coarse-graining, i.e., grouping of the order of p~10^10 real particles into a single computer superparticle, and field storage on a grid with its subsequent finite superparticle size. We introduce the notion of coarse-graining dependent quantities, i.e., quantities depending on p. They derive from the PIC plasma parameter Lambda^{PIC}, which we show to scale as 1/p. We explore two implications. One is that PIC collision- and fluctuation-induced thermalization times are expected to scale with the number of superparticles per grid cell, and thus to be a factor p~10^10 smaller than in real plasmas. The other is that the level of electric field fluctuations scales as 1/Lambda^{PIC} ~ p. We provide a corresponding exact expression. Fourth, we compare the Vlasov-Maxwell theory, which describes a phase-space fluid with infinite Lambda, to the PIC model and its relatively small Lambda.Comment: 24 pages, 14 figures, accepted in Astronomy & Astrophysic

    Self-Similar Collisionless Shocks

    Full text link
    Observations of gamma-ray burst afterglows suggest that the correlation length of magnetic field fluctuations downstream of relativistic non-magnetized collisionless shocks grows with distance from the shock to scales much larger than the plasma skin depth. We argue that this indicates that the plasma properties are described by a self-similar solution, and derive constraints on the scaling properties of the solution. For example, we find that the scaling of the characteristic magnetic field amplitude with distance from the shock is B \propto D^{s_B} with -1<s_B<=0, that the spectrum of accelerated particles is dn/dE \propto E^{-2/(s_B+1)}, and that the scaling of the magnetic correlation function is \propto x^{2s_B} (for x>>D). We show that the plasma may be approximated as a combination of two self-similar components: a kinetic component of energetic particles and an MHD-like component representing "thermal" particles. We argue that the latter may be considered as infinitely conducting, in which case s_B=0 and the scalings are completely determined (e.g. dn/dE \propto E^{-2} and B \propto D^0). Similar claims apply to non- relativistic shocks such as in supernova remnants, if the upstream magnetic field can be neglected. Self-similarity has important implications for any model of particle acceleration and/or field generation. For example, we show that the diffusion function in the angle \mu of momentum p in diffusive shock acceleration models must satisfy D_{\mu\mu}(p,D) = D^{-1}D'_{\mu\mu}(p/D), and that a previously suggested model for the generation of large scale magnetic fields through a hierarchical merger of current-filaments should be generalized. A numerical experiment testing our analysis is outlined (Abridged).Comment: 16 pages, 1 figure, accepted for publication in Ap

    Signatures of Secondary Collisionless Magnetic Reconnection Driven by Kink Instability of a Flux Rope

    Full text link
    The kinetic features of secondary magnetic reconnection in a single flux rope undergoing internal kink instability are studied by means of three-dimensional Particle-in-Cell simulations. Several signatures of secondary magnetic reconnection are identified in the plane perpendicular to the flux rope: a quadrupolar electron and ion density structure and a bipolar Hall magnetic field develop in proximity of the reconnection region. The most intense electric fields form perpendicularly to the local magnetic field, and a reconnection electric field is identified in the plane perpendicular to the flux rope. An electron current develops along the reconnection line in the opposite direction of the electron current supporting the flux rope magnetic field structure. Along the reconnection line, several bipolar structures of the electric field parallel to the magnetic field occur making the magnetic reconnection region turbulent. The reported signatures of secondary magnetic reconnection can help to localize magnetic reconnection events in space, astrophysical and fusion plasmas

    How to model quantum plasmas

    Full text link
    Traditional plasma physics has mainly focused on regimes characterized by high temperatures and low densities, for which quantum-mechanical effects have virtually no impact. However, recent technological advances (particularly on miniaturized semiconductor devices and nanoscale objects) have made it possible to envisage practical applications of plasma physics where the quantum nature of the particles plays a crucial role. Here, I shall review different approaches to the modeling of quantum effects in electrostatic collisionless plasmas. The full kinetic model is provided by the Wigner equation, which is the quantum analog of the Vlasov equation. The Wigner formalism is particularly attractive, as it recasts quantum mechanics in the familiar classical phase space, although this comes at the cost of dealing with negative distribution functions. Equivalently, the Wigner model can be expressed in terms of NN one-particle Schr{\"o}dinger equations, coupled by Poisson's equation: this is the Hartree formalism, which is related to the `multi-stream' approach of classical plasma physics. In order to reduce the complexity of the above approaches, it is possible to develop a quantum fluid model by taking velocity-space moments of the Wigner equation. Finally, certain regimes at large excitation energies can be described by semiclassical kinetic models (Vlasov-Poisson), provided that the initial ground-state equilibrium is treated quantum-mechanically. The above models are validated and compared both in the linear and nonlinear regimes.Comment: To be published in the Fields Institute Communications Series. Proceedings of the Workshop on Kinetic Theory, The Fields Institute, Toronto, March 29 - April 2, 200

    On the Wake Structure in Streaming Complex Plasmas

    Get PDF
    The theoretical description of complex (dusty) plasmas requires multiscale concepts that adequately incorporate the correlated interplay of streaming electrons and ions, neutrals, and dust grains. Knowing the effective dust-dust interaction, the multiscale problem can be effectively reduced to a one-component plasma model of the dust subsystem. The goal of the present publication is a systematic evaluation of the electrostatic potential distribution around a dust grain in the presence of a streaming plasma environment by means of two complementary approaches: (i) a high precision computation of the dynamically screened Coulomb potential from the dynamic dielectric function, and (ii) full 3D particle-in-cell simulations, which self-consistently include dynamical grain charging and non-linear effects. The applicability of these two approaches is addressed
    corecore