8,864 research outputs found

    Differential diffusion in Multiple Mapping Conditioning (MMC) Model

    Get PDF

    Progress Toward Affordable High Fidelity Combustion Simulations Using Filtered Density Functions for Hypersonic Flows in Complex Geometries

    Get PDF
    Significant progress has been made in the development of subgrid scale (SGS) closures based on a filtered density function (FDF) for large eddy simulations (LES) of turbulent reacting flows. The FDF is the counterpart of the probability density function (PDF) method, which has proven effective in Reynolds averaged simulations (RAS). However, while systematic progress is being made advancing the FDF models for relatively simple flows and lab-scale flames, the application of these methods in complex geometries and high speed, wall-bounded flows with shocks remains a challenge. The key difficulties are the significant computational cost associated with solving the FDF transport equation and numerically stiff finite rate chemistry. For LES/FDF methods to make a more significant impact in practical applications a pragmatic approach must be taken that significantly reduces the computational cost while maintaining high modeling fidelity. An example of one such ongoing effort is at the NASA Langley Research Center, where the first generation FDF models, namely the scalar filtered mass density function (SFMDF) are being implemented into VULCAN, a production-quality RAS and LES solver widely used for design of high speed propulsion flowpaths. This effort leverages internal and external collaborations to reduce the overall computational cost of high fidelity simulations in VULCAN by: implementing high order methods that allow reduction in the total number of computational cells without loss in accuracy; implementing first generation of high fidelity scalar PDF/FDF models applicable to high-speed compressible flows; coupling RAS/PDF and LES/FDF into a hybrid framework to efficiently and accurately model the effects of combustion in the vicinity of the walls; developing efficient Lagrangian particle tracking algorithms to support robust solutions of the FDF equations for high speed flows; and utilizing finite rate chemistry parametrization, such as flamelet models, to reduce the number of transported reactive species and remove numerical stiffness. This paper briefly introduces the SFMDF model (highlighting key benefits and challenges), and discusses particle tracking for flows with shocks, the hybrid coupled RAS/PDF and LES/FDF model, flamelet generated manifolds (FGM) model, and the Irregularly Portioned Lagrangian Monte Carlo Finite Difference (IPLMCFD) methodology for scalable simulation of high-speed reacting compressible flows

    A non-hybrid method for the PDF equations of turbulent flows on unstructured grids

    Full text link
    In probability density function (PDF) methods of turbulent flows, the joint PDF of several flow variables is computed by numerically integrating a system of stochastic differential equations for Lagrangian particles. A set of parallel algorithms is proposed to provide an efficient solution of the PDF transport equation, modeling the joint PDF of turbulent velocity, frequency and concentration of a passive scalar in geometrically complex configurations. An unstructured Eulerian grid is employed to extract Eulerian statistics, to solve for quantities represented at fixed locations of the domain (e.g. the mean pressure) and to track particles. All three aspects regarding the grid make use of the finite element method (FEM) employing the simplest linear FEM shape functions. To model the small-scale mixing of the transported scalar, the interaction by exchange with the conditional mean model is adopted. An adaptive algorithm that computes the velocity-conditioned scalar mean is proposed that homogenizes the statistical error over the sample space with no assumption on the shape of the underlying velocity PDF. Compared to other hybrid particle-in-cell approaches for the PDF equations, the current methodology is consistent without the need for consistency conditions. The algorithm is tested by computing the dispersion of passive scalars released from concentrated sources in two different turbulent flows: the fully developed turbulent channel flow and a street canyon (or cavity) flow. Algorithmic details on estimating conditional and unconditional statistics, particle tracking and particle-number control are presented in detail. Relevant aspects of performance and parallelism on cache-based shared memory machines are discussed.Comment: Accepted in Journal of Computational Physics, Feb. 20, 200

    A multiple mapping conditioning model for differential diffusion

    Get PDF
    This work introduces modeling of differential diffusion within the multiple mapping conditioning (MMC) turbulent mixing and combustion framework. The effect of differential diffusion on scalar variance decay is analyzed and, following a number of publications, is found to scale as Re. The ability to model the differential decay rates is the most important aim of practical differential diffusion models, and here this is achieved in MMC by introducing what is called the side-stepping method. The approach is practical and, as it does not involve an increase in the number of MMC reference variables, economical. In addition we also investigate the modeling of a more refined and difficult to reproduce differential diffusion effect - the loss of correlation between the different scalars. For this we develop an alternative MMC model with two reference variables but which also makes use of the side-stepping method. The new models are successfully validated against DNS results available in literature for homogenous, isotropic two scalar mixing

    The instanton method and its numerical implementation in fluid mechanics

    Full text link
    A precise characterization of structures occurring in turbulent fluid flows at high Reynolds numbers is one of the last open problems of classical physics. In this review we discuss recent developments related to the application of instanton methods to turbulence. Instantons are saddle point configurations of the underlying path integrals. They are equivalent to minimizers of the related Freidlin-Wentzell action and known to be able to characterize rare events in such systems. While there is an impressive body of work concerning their analytical description, this review focuses on the question on how to compute these minimizers numerically. In a short introduction we present the relevant mathematical and physical background before we discuss the stochastic Burgers equation in detail. We present algorithms to compute instantons numerically by an efficient solution of the corresponding Euler-Lagrange equations. A second focus is the discussion of a recently developed numerical filtering technique that allows to extract instantons from direct numerical simulations. In the following we present modifications of the algorithms to make them efficient when applied to two- or three-dimensional fluid dynamical problems. We illustrate these ideas using the two-dimensional Burgers equation and the three-dimensional Navier-Stokes equations

    An Irregularly Portioned FDF Solver for Turbulent Flow Simulation

    Get PDF
    A new computational methodology is developed for large eddy simulation (LES) with the filtered density function (FDF) formulation of turbulent reacting flows. This methodology is termed the "irregularly portioned Lagrangian Monte Carlo finite difference" (IPLMCFD). It takes advantage of modern parallel platforms and mitigates the computational cost of LES/FDF significantly. The embedded algorithm addresses the load balancing issue by decomposing the computational domain into a series of irregularly shaped and sized subdomains. The resulting algorithm scales to thousands of processors with an excellent efficiency. Thus it is well suited for LES of reacting flows in large computational domains and under complex chemical kinetics. The efficiency of the IPLMCFD; and the realizability, consistency and the predictive capability of FDF are demonstrated by LES of several turbulent flames

    The Hitchhiker's Guide to Nonlinear Filtering

    Get PDF
    Nonlinear filtering is the problem of online estimation of a dynamic hidden variable from incoming data and has vast applications in different fields, ranging from engineering, machine learning, economic science and natural sciences. We start our review of the theory on nonlinear filtering from the simplest `filtering' task we can think of, namely static Bayesian inference. From there we continue our journey through discrete-time models, which is usually encountered in machine learning, and generalize to and further emphasize continuous-time filtering theory. The idea of changing the probability measure connects and elucidates several aspects of the theory, such as the parallels between the discrete- and continuous-time problems and between different observation models. Furthermore, it gives insight into the construction of particle filtering algorithms. This tutorial is targeted at scientists and engineers and should serve as an introduction to the main ideas of nonlinear filtering, and as a segway to more advanced and specialized literature.Comment: 64 page

    VS-FMDF and EPVS-FMDF for Large Eddy Simulation of Turbulent Flows

    Get PDF
    The first part of this dissertation is concerned with implementation of the joint ``velocity-scalar filtered mass density function'' (VS-FMDF) methodology for large eddy simulation (LES) of Sandia Flame D. This is a turbulent piloted nonpremixed methane jet flame. In VS-FMDF, the effects of the subgrid scale chemical reaction and convection appear in closed forms. The modeled transport equation for the VS-FMDF is solved by a hybrid finite-difference/Monte Carlo scheme. For this flame (which exhibits little local extinction), a flamelet model is employed to relate the instantaneous composition to the mixture fraction. The LES predictions are compared with experimental data. It is shown that the methodology captures important features of the flame as observed experimentally. In the second part of this dissertation, the joint ``energy-pressure-velocity-scalar filtered mass density function'' (EPVS-FMDF) is developed as a new subgrid scale (SGS) model for LES of high-speed turbulent flows. In this model, the effects of compressibility are taken into account by including two additional thermodynamic variables: the pressure and the internal energy. The EPVS-FMDF is obtained by solving its modeled transport equation, in which the effect of convection appears in a closed form. The modeled EPVS-FMDF is employed for LES of a temporally developing mixing layer
    corecore