313 research outputs found

    Characterizing the Noise Associated with Sensor Placement and Motion Artifacts and Overcoming its Effects for Body-worn Physiological Sensors

    Get PDF
    Wearable sensors for continuous physiological monitoring have the potential to change the paradigm for healthcare by providing information in scenarios not covered by the existing clinical model. One key challenge for wearable physiological sensors is that their signal-to-noise ratios are low compared to those of their medical grade counterparts in hospitals. Two primary sources of noise are the sensor-skin contact interface and motion artifacts due to the user’s daily activities. These are challenging problems because the initial sensor placement by the user may not be ideal, the skin conditions can change over time, and the nature of motion artifacts is not predictable. The objective of this research is twofold. The first is to design sensors with reconfigurable contact to mitigate the effects of misplaced sensors or changing skin conditions. The second is to leverage signal processing techniques for accurate physiological parameter estimation despite the presence of motion artifacts. In this research, the sensor contact problem was specifically addressed for dry-contact electroencephalography (EEG). The proposed novel extension to a popular existing EEG electrode design enabled reconfigurable contact to adjust to variations in sensor placement and skin conditions over time. Experimental results on human subjects showed that reconfiguration of contact can reduce the noise in collected EEG signals without the need for manual intervention. To address the motion artifact problem, a particle filter based approach was employed to track the heart rate in cardiac signals affected by the movements of the user. The algorithm was tested on cardiac signals from human subjects running on a treadmill and showed good performance in accurately tracking heart rate. Moreover, the proposed algorithm enables fusion of multiple modalities and is also computationally more efficient compared to other contemporary approaches

    Description of a Database Containing Wrist PPG Signals Recorded during Physical Exercise with Both Accelerometer and Gyroscope Measures of Motion

    Get PDF
    Wearable heart rate sensors such as those found in smartwatches are commonly based upon Photoplethysmography (PPG) which shines a light into the wrist and measures the amount of light reflected back. This method works well for stationary subjects, but in exercise situations, PPG signals are heavily corrupted by motion artifacts. The presence of these artifacts necessitates the creation of signal processing algorithms for removing the motion interference and allowing the true heart related information to be extracted from the PPG trace during exercise. Here, we describe a new publicly available database of PPG signals collected during exercise for the creation and validation of signal processing algorithms extracting heart rate and heart rate variability from PPG signals. PPG signals from the wrist are recorded together with chest electrocardiography (ECG) to allow a reference/comparison heart rate to be found, and the temporal alignment between the two signal sets is estimated from the signal timestamps. The new database differs from previously available public databases because it includes wrist PPG recorded during walking, running, easy bike riding and hard bike riding. It also provides estimates of the wrist movement recorded using a 3-axis low-noise accelerometer, a 3-axis wide-range accelerometer, and a 3-axis gyroscope. The inclusion of gyroscopic information allows, for the first time, separation of acceleration due to gravity and acceleration due to true motion of the sensor. The hypothesis is that the improved motion information provided could assist in the development of algorithms with better PPG motion artifact removal performance

    Heart Rate Estimation During Physical Exercise Using Wrist-Type Ppg Sensors

    Get PDF
    Accurate heart rate monitoring during intense physical exercise is a challenging problem due to the high levels of motion artifacts (MA) in photoplethysmography (PPG) sensors. PPG is a non-invasive optical sensor that is being used in wearable devices to measure blood flow changes using the property of light reflection and absorption, allowing the extraction of vital signals such as the heart rate (HR). However, the sensor is susceptible to MA which increases during physical activity. This occurs since the frequency range of movement and HR overlaps, difficulting correct HR estimation. For this reason, MA removal has remained an active topic under research. Several approaches have been developed in the recent past and among these, a Kalman filter (KF) based approach showed promising results for an accurate estimation and tracking using PPG sensors. However, this previous tracker was demonstrated for a particular dataset, with manually tuned parameters. Moreover, such trackers do not account for the correct method for fusing data. Such a custom approach might not perform accurately in practical scenarios, where the amount of MA and the heart rate variability (HRV) depend on numerous, unpredictable factors. Thus, an approach to automatically tune the KF based on the Expectation-Maximization (EM) algorithm, with a measurement fusion approach is developed. The applicability of such a method is demonstrated using an open-source PPG database, as well as a developed synthetic generation tool that models PPG and accelerometer (ACC) signals during predetermined physical activities

    Motion Artifact Processing Techniques for Physiological Signals

    Get PDF
    The combination of reducing birth rate and increasing life expectancy continues to drive the demographic shift toward an ageing population and this is placing an ever-increasing burden on our healthcare systems. The urgent need to address this so called healthcare \time bomb" has led to a rapid growth in research into ubiquitous, pervasive and distributed healthcare technologies where recent advances in signal acquisition, data storage and communication are helping such systems become a reality. However, similar to recordings performed in the hospital environment, artifacts continue to be a major issue for these systems. The magnitude and frequency of artifacts can vary signicantly depending on the recording environment with one of the major contributions due to the motion of the subject or the recording transducer. As such, this thesis addresses the challenges of the removal of this motion artifact removal from various physiological signals. The preliminary investigations focus on artifact identication and the tagging of physiological signals streams with measures of signal quality. A new method for quantifying signal quality is developed based on the use of inexpensive accelerometers which facilitates the appropriate use of artifact processing methods as needed. These artifact processing methods are thoroughly examined as part of a comprehensive review of the most commonly applicable methods. This review forms the basis for the comparative studies subsequently presented. Then, a simple but novel experimental methodology for the comparison of artifact processing techniques is proposed, designed and tested for algorithm evaluation. The method is demonstrated to be highly eective for the type of artifact challenges common in a connected health setting, particularly those concerned with brain activity monitoring. This research primarily focuses on applying the techniques to functional near infrared spectroscopy (fNIRS) and electroencephalography (EEG) data due to their high susceptibility to contamination by subject motion related artifact. Using the novel experimental methodology, complemented with simulated data, a comprehensive comparison of a range of artifact processing methods is conducted, allowing the identication of the set of the best performing methods. A novel artifact removal technique is also developed, namely ensemble empirical mode decomposition with canonical correlation analysis (EEMD-CCA), which provides the best results when applied on fNIRS data under particular conditions. Four of the best performing techniques were then tested on real ambulatory EEG data contaminated with movement artifacts comparable to those observed during in-home monitoring. It was determined that when analysing EEG data, the Wiener lter is consistently the best performing artifact removal technique. However, when employing the fNIRS data, the best technique depends on a number of factors including: 1) the availability of a reference signal and 2) whether or not the form of the artifact is known. It is envisaged that the use of physiological signal monitoring for patient healthcare will grow signicantly over the next number of decades and it is hoped that this thesis will aid in the progression and development of artifact removal techniques capable of supporting this growth

    A Novel Non-Invasive Estimation of Respiration Rate from Motion Corrupted Photoplethysmograph Signal Using Machine Learning Model

    Get PDF
    Respiratory ailments such as asthma, chronic obstructive pulmonary disease (COPD), pneumonia, and lung cancer are life-Threatening. Respiration rate (RR) is a vital indicator of the wellness of a patient. Continuous monitoring of RR can provide early indication and thereby save lives. However, a real-Time continuous RR monitoring facility is only available at the intensive care unit (ICU) due to the size and cost of the equipment. Recent researches have proposed Photoplethysmogram (PPG) and/ Electrocardiogram (ECG) signals for RR estimation however, the usage of ECG is limited due to the unavailability of it in wearable devices. Due to the advent of wearable smartwatches with built-in PPG sensors, it is now being considered for continuous monitoring of RR. This paper describes a novel approach for RR estimation using motion artifact correction and machine learning (ML) models with the PPG signal features. Feature selection algorithms were used to reduce computational complexity and the chance of overfitting. The best ML model and the best feature selection algorithm combination were fine-Tuned to optimize its performance using hyperparameter optimization. Gaussian Process Regression (GPR) with Fit a Gaussian process regression model (Fitrgp) feature selection algorithm outperformed all other combinations and exhibits a root mean squared error (RMSE), mean absolute error (MAE), and two-standard deviation (2SD) of 2.63, 1.97, and 5.25 breaths per minute, respectively. Patients would be able to track RR at a lower cost and with less inconvenience if RR can be extracted efficiently and reliably from the PPG signal. 2013 IEEE.Corresponding authors: Muhammad E. H. Chowdhury ([email protected]), Mamun Bin Ibne Reaz ([email protected]), and Md. Shafayet Hossain ([email protected]) This work was supported in part by the Qatar National Research under Grant NPRP12S-0227-190164, and in part by the International Research Collaboration Co-Fund (IRCC) through Qatar University under Grant IRCC-2021-001. The statements made herein are solely the responsibility of the authors.Scopu

    Acoustic cardiac signals analysis: a Kalman filter–based approach

    Get PDF
    Auscultation of the heart is accompanied by both electrical activity and sound. Heart auscultation provides clues to diagnose many cardiac abnormalities. Unfortunately, detection of relevant symptoms and diagnosis based on heart sound through a stethoscope is difficult. The reason GPs find this difficult is that the heart sounds are of short duration and separated from one another by less than 30 ms. In addition, the cost of false positives constitutes wasted time and emotional anxiety for both patient and GP. Many heart diseases cause changes in heart sound, waveform, and additional murmurs before other signs and symptoms appear. Heart-sound auscultation is the primary test conducted by GPs. These sounds are generated primarily by turbulent flow of blood in the heart. Analysis of heart sounds requires a quiet environment with minimum ambient noise. In order to address such issues, the technique of denoising and estimating the biomedical heart signal is proposed in this investigation. Normally, the performance of the filter naturally depends on prior information related to the statistical properties of the signal and the background noise. This paper proposes Kalman filtering for denoising statistical heart sound. The cycles of heart sounds are certain to follow first-order Gauss–Markov process. These cycles are observed with additional noise for the given measurement. The model is formulated into state-space form to enable use of a Kalman filter to estimate the clean cycles of heart sounds. The estimates obtained by Kalman filtering are optimal in mean squared sense

    Robust and Analytical Cardiovascular Sensing

    Get PDF
    The photoplethysmogram (PPG) is a noninvasive cardiovascular signal related to the pulsatile volume of blood in tissue. The PPG is user-friendly and has the potential to be measured remotely in a contactless manner using a regular RGB camera. In this dissertation, we study the modeling and analytics of PPG signal to facilitate its applications in both robust and remote cardiovascular sensing. In the first part of this dissertation, we study the remote photoplethysmography (rPPG) and present a robust and efficient rPPG system to extract pulse rate (PR) and pulse rate variability (PRV) from face videos. Compared with prior art, our proposed system can achieve accurate PR and PRV estimates even when the video contains significant subject motion and environmental illumination change. In the second part of the dissertation, we present a novel frequency tracking algorithm called Adaptive Multi-Trace Carving (AMTC) to address the micro signal extraction problems. AMTC enables an accurate detection and estimation of one or more subtle frequency components in a very low signal-to-noise ratio condition. In the third part of the dissertation, the relation between electrocardiogram (ECG) and PPG is studied and the waveform of ECG is inferred via the PPG signals. In order to address this cardiovascular inverse problem, a transform is proposed to map the discrete cosine transform coefficients of each PPG cycle to those of the corresponding ECG cycle. As the first work to address this biomedical inverse problem, this line of research enables a full utilization of the easy accessibility of PPG and the clinical authority of ECG for better preventive healthcare

    Energy Efficient Heart Rate Sensing using a Painted Electrode ECG Wearable

    Get PDF
    © 2017 IEEE. Many countries are facing burdens on their health care systems due to ageing populations. A promising strategy to address the problem is to allow selected people to remain in their homes and be monitored using recent advances in wearable devices, saving in-hospital resources. With respect to heart monitoring, wearable devices to date have principally used optical techniques by shining light through the skin. However, these techniques are severely hampered by motion artifacts and are limited to heart rate detection. Further, these optical devices consume a large amount of power in order to receive a sufficient signal, resulting in the need for frequent battery recharging. To address these shortcomings we present a new wrist ECG wearable that is similar to the clinical approach for heart monitoring. Our device weighs less than 30 g, and is ultra low power, extending the battery lifetime to over a month to make the device more appropriate for in-home health care applications. The device uses two electrodes activated by the user to measure the voltage across the wrists. The electrodes are made from a flexible ink and can be painted on to the device casing, making it adaptable for different shapes and users. In this paper we show how the ECG sensor can be integrated into an existing IoT wearable and compare the device\u27s accuracy against other common commercial devices

    Design of a Simulator for Neonatal Multichannel EEG: Application to Time-Frequency Approaches for Automatic Artifact Removal and Seizure Detection

    Get PDF
    The electroencephalogram (EEG) is used to noninvasively monitor brain activities; it is the most utilized tool to detect abnormalities such as seizures. In recent studies, detection of neonatal EEG seizures has been automated to assist neurophysiologists in diagnosing EEG as manual detection is time consuming and subjective; however it still lacks the necessary robustness that is required for clinical implementation. Moreover, as EEG is intended to record the cerebral activities, extra-cerebral activities external to the brain are also recorded; these are called “artifacts” and can seriously degrade the accuracy of seizure detection. Seizures are one of the most common neurologic problems managed by hospitals occurring in 0.1%-0.5% livebirths. Neonates with seizures are at higher risk for mortality and are reported to be 55-70 times more likely to have severe cerebral-palsy. Therefore, early and accurate detection of neonatal seizures is important to prevent long-term neurological damage. Several attempts in modelling the neonatal EEG and artifacts have been done, but most did not consider the multichannel case. Furthermore, these models were used to test artifact or seizure detection separately, but not together. This study aims to design synthetic models that generate clean or corrupted multichannel EEG to test the accuracy of available artifact and seizure detection algorithms in a controlled environment. In this thesis, synthetic neonatal EEG model is constructed by using; single-channel EEG simulators, head model, 21-electrodes, and propagation equations, to produce clean multichannel EEG. Furthermore, neonatal EEG artifact model is designed using synthetic signals to corrupt EEG waveforms. After that, an automated EEG artifact detection and removal system is designed in both time and time-frequency domains. Artifact detection is optimised and removal performance is evaluated. Finally, an automated seizure detection technique is developed, utilising fused and extended multichannel features along a cross-validated SVM classifier. Results show that the synthetic EEG model mimics real neonatal EEG with 0.62 average correlation, and corrupted-EEG can degrade seizure detection average accuracy from 100% to 70.9%. They also show that using artifact detection and removal enhances the average accuracy to 89.6%, and utilising the extended features enhances it to 97.4% and strengthened its robustness.لمراقبة ورصد أنشطة واشارات المخ، دون الحاجة لأي عملیات (EEG) یستخدم الرسم أو التخطیط الكھربائي للدماغ للدماغجراحیة، وھي تعد الأداة الأكثر استخداما في الكشف عن أي شذوذأو نوبات غیر طبیعیة مثل نوبات الصرع. وقد أظھرت دراسات حدیثة، أن الكشف الآلي لنوبات حدیثي الولادة، ساعد علماء الفسیولوجیا العصبیة في تشخیص الاشارات الدماغیة بشكل أكبر من الكشف الیدوي، حیث أن الكشف الیدوي یحتاج إلى وقت وجھد أكبر وھوذو فعالیة أقل بكثیر، إلا أنھ لا یزال یفتقر إلى المتانة الضروریة والمطلوبة للتطبیق السریري.علاوة على ذلك؛ فكما یقوم الرسم الكھربائي بتسجیل الأنشطة والإشارات الدماغیة الداخلیة، فھو یسجل أیضا أي نشاط أو اشارات خارجیة، مما یؤدي إلى -(artifacts) :حدوث خلل في مدى دقة وفعالیة الكشف عن النوبات الدماغیة الداخلیة، ویطلق على تلك الاشارات مسمى (نتاج صنعي) . 0.5٪ولادة حدیثة في -٪تعد نوبات الصرع من أكثر المشكلات العصبیة انتشارا،ً وھي تصیب ما یقارب 0.1المستشفیات. حیث أن حدیثي الولادة المصابین بنوبات الصرع ھم أكثر عرضة للوفاة، وكما تشیر التقاریر الى أنھم 70مرة أكثر. لذا یعد الكشف المبكر والدقیق للنوبات الدماغیة -معرضین للإصابة بالشلل الدماغي الشدید بما یقارب 55لحدیثي الولادة مھم جدا لمنع الضرر العصبي على المدى الطویل. لقد تم القیام بالعدید من المحاولات التي كانتتھدف الى تصمیم نموذج التخطیط الكھربائي والنتاج الصنعي لدماغ حدیثي الولادة, إلا أن معظمھا لم یعر أي اھتمام الى قضیة تعدد القنوات. إضافة الى ذلك, استخدمت ھذه النماذج , كل على حدة, أو نوبات الصرع. تھدف ھذه الدراسة الى تصمیم نماذج مصطنعة من شأنھا (artifact) لإختبار كاشفات النتاج الصنعيأن تولد اشارات دماغیة متعددة القنوات سلیمة أو معطلة وذلك لفحص مدى دقة فعالیة خوارزمیات الكشف عن نوبات ضمن بیئة یمكن السیطرة علیھا. (artifact) الصرع و النتاج الصنعي في ھذه الأطروحة, یتكون نموذج الرسم الكھربائي المصطنع لحدیثي الولادة من : قناة محاكاة واحده للرسم الكھربائي, نموذج رأس, 21قطب كھربائي و معادلات إنتشار. حیث تھدف جمیعھا لإنتاج إشاراة سلیمة متعدده القنوات للتخطیط عن طریق استخدام اشارات مصطنعة (artifact) الكھربائي للدماغ.علاوة على ذلك, لقد تم تصمیم نموذجالنتاج الصنعيفي نطاقالوقت و (artifact) لإتلاف الرسم الكھربائي للدماغ. بعد ذلك تم انشاء برنامج لكشف و إزالةالنتاج الصناعينطاقالوقت و التردد المشترك. تم تحسین برنامج الكشف النتاج الصناعيالى ابعد ما یمكن بینما تمت عملیة تقییم أداء الإزالة. وفي الختام تم التمكن من تطویر تقنیة الكشف الآلي عن نوبات الصرع, وذلك بتوظیف صفات مدمجة و صفات الذي تم التأكد من صحتھ. (SVM) جدیدة للقنوات المتعددة لإستخدامھا للمصنفلقد أظھرت النتائج أن نموذج الرسم الكھربائي المصطنع لحدیثي الولادة یحاكي الرسمالكھربائي الحقیقي لحدیثي الولادة بمتوسط ترابط 0.62, و أنالرسم الكھربائي المتضرر للدماغ قد یؤدي الى حدوث ھبوطفي مدى دقة متوسط الكشف عن نوبات الصرع من 100%الى 70.9%. وقد أشارت أیضا الى أن استخدام الكشف والإزالة عن النتاج الصنعي (artifact) یؤدي الى تحسن مستوى الدقة الى نسبة 89.6 %, وأن توظیف الصفات الجدیدة للقنوات المتعددة یزید من تحسنھا لتصل الى نسبة 94.4 % مما یعمل على دعم متانتھا
    corecore