48 research outputs found

    Linearizing Radio Frequency Power Amplifiers Using an Analog Predistortion Technique

    Get PDF
    As critical elements of the physical infrastructure that enables ubiquitous wireless connectivity, radio frequency power amplifiers (RFPAs) are constantly pushed to the limits of linear but efficient operation. Digital predistortion, as a means of circumventing the limitations of this inherent linearity – efficiency trade-off, has been a subject of prolific research for well over a decade. However, to support the unrestrained growth of broadband mobile traffic, wireless networks are expected to rely increasingly on heterogeneously-sized small cells which necessitate new predistortion solutions operating at a fraction of the power consumed by digital predistortion approaches. This thesis pertains to an emerging area of research involving analog predistortion (APD) – a promising, low-power alternative to digital predistortion (DPD) for future wireless networks. Specifically, it proposes a mathematical function that can be used by the predistorter to linearize RFPAs. As a preliminary step, the challenges of transitioning from DPD to APD are identified and used to formulate the constraints that APD imposes on the predistorter function. Following an assessment of the mathematical functions commonly used for DPD, and an analysis of the physical mechanisms of RFPA distortion, a new candidate function is proposed. This function is both compatible with and feasible for an APD implementation, and offers competitive performance against more complex predistorter functions (that can only be implemented in DPD). The proposed predistorter function and its associated coefficient identification procedure are experimentally validated by using them to linearize an RFPA stimulated with single-band carrier aggregated signals of progressively wider bandwidths. The solution is then extended to the case of dual-band transmission, and subsequently validated on an RFPA as well. The proposed function is a cascade of a finite impulse response filter and an envelope memory polynomial and has the potential to deliver far better linearization results than what has been demonstrated to date in the APD literature

    Contributions to improve the technologies supporting unmanned aircraft operations

    Get PDF
    Mención Internacional en el título de doctorUnmanned Aerial Vehicles (UAVs), in their smaller versions known as drones, are becoming increasingly important in today's societies. The systems that make them up present a multitude of challenges, of which error can be considered the common denominator. The perception of the environment is measured by sensors that have errors, the models that interpret the information and/or define behaviors are approximations of the world and therefore also have errors. Explaining error allows extending the limits of deterministic models to address real-world problems. The performance of the technologies embedded in drones depends on our ability to understand, model, and control the error of the systems that integrate them, as well as new technologies that may emerge. Flight controllers integrate various subsystems that are generally dependent on other systems. One example is the guidance systems. These systems provide the engine's propulsion controller with the necessary information to accomplish a desired mission. For this purpose, the flight controller is made up of a control law for the guidance system that reacts to the information perceived by the perception and navigation systems. The error of any of the subsystems propagates through the ecosystem of the controller, so the study of each of them is essential. On the other hand, among the strategies for error control are state-space estimators, where the Kalman filter has been a great ally of engineers since its appearance in the 1960s. Kalman filters are at the heart of information fusion systems, minimizing the error covariance of the system and allowing the measured states to be filtered and estimated in the absence of observations. State Space Models (SSM) are developed based on a set of hypotheses for modeling the world. Among the assumptions are that the models of the world must be linear, Markovian, and that the error of their models must be Gaussian. In general, systems are not linear, so linearization are performed on models that are already approximations of the world. In other cases, the noise to be controlled is not Gaussian, but it is approximated to that distribution in order to be able to deal with it. On the other hand, many systems are not Markovian, i.e., their states do not depend only on the previous state, but there are other dependencies that state space models cannot handle. This thesis deals a collection of studies in which error is formulated and reduced. First, the error in a computer vision-based precision landing system is studied, then estimation and filtering problems from the deep learning approach are addressed. Finally, classification concepts with deep learning over trajectories are studied. The first case of the collection xviiistudies the consequences of error propagation in a machine vision-based precision landing system. This paper proposes a set of strategies to reduce the impact on the guidance system, and ultimately reduce the error. The next two studies approach the estimation and filtering problem from the deep learning approach, where error is a function to be minimized by learning. The last case of the collection deals with a trajectory classification problem with real data. This work completes the two main fields in deep learning, regression and classification, where the error is considered as a probability function of class membership.Los vehículos aéreos no tripulados (UAV) en sus versiones de pequeño tamaño conocidos como drones, van tomando protagonismo en las sociedades actuales. Los sistemas que los componen presentan multitud de retos entre los cuales el error se puede considerar como el denominador común. La percepción del entorno se mide mediante sensores que tienen error, los modelos que interpretan la información y/o definen comportamientos son aproximaciones del mundo y por consiguiente también presentan error. Explicar el error permite extender los límites de los modelos deterministas para abordar problemas del mundo real. El rendimiento de las tecnologías embarcadas en los drones, dependen de nuestra capacidad de comprender, modelar y controlar el error de los sistemas que los integran, así como de las nuevas tecnologías que puedan surgir. Los controladores de vuelo integran diferentes subsistemas los cuales generalmente son dependientes de otros sistemas. Un caso de esta situación son los sistemas de guiado. Estos sistemas son los encargados de proporcionar al controlador de los motores información necesaria para cumplir con una misión deseada. Para ello se componen de una ley de control de guiado que reacciona a la información percibida por los sistemas de percepción y navegación. El error de cualquiera de estos sistemas se propaga por el ecosistema del controlador siendo vital su estudio. Por otro lado, entre las estrategias para abordar el control del error se encuentran los estimadores en espacios de estados, donde el filtro de Kalman desde su aparición en los años 60, ha sido y continúa siendo un gran aliado para los ingenieros. Los filtros de Kalman son el corazón de los sistemas de fusión de información, los cuales minimizan la covarianza del error del sistema, permitiendo filtrar los estados medidos y estimarlos cuando no se tienen observaciones. Los modelos de espacios de estados se desarrollan en base a un conjunto de hipótesis para modelar el mundo. Entre las hipótesis se encuentra que los modelos del mundo han de ser lineales, markovianos y que el error de sus modelos ha de ser gaussiano. Generalmente los sistemas no son lineales por lo que se realizan linealizaciones sobre modelos que a su vez ya son aproximaciones del mundo. En otros casos el ruido que se desea controlar no es gaussiano, pero se aproxima a esta distribución para poder abordarlo. Por otro lado, multitud de sistemas no son markovianos, es decir, sus estados no solo dependen del estado anterior, sino que existen otras dependencias que los modelos de espacio de estados no son capaces de abordar. Esta tesis aborda un compendio de estudios sobre los que se formula y reduce el error. En primer lugar, se estudia el error en un sistema de aterrizaje de precisión basado en visión por computador. Después se plantean problemas de estimación y filtrado desde la aproximación del aprendizaje profundo. Por último, se estudian los conceptos de clasificación con aprendizaje profundo sobre trayectorias. El primer caso del compendio estudia las consecuencias de la propagación del error de un sistema de aterrizaje de precisión basado en visión artificial. En este trabajo se propone un conjunto de estrategias para reducir el impacto sobre el sistema de guiado, y en última instancia reducir el error. Los siguientes dos estudios abordan el problema de estimación y filtrado desde la perspectiva del aprendizaje profundo, donde el error es una función que minimizar mediante aprendizaje. El último caso del compendio aborda un problema de clasificación de trayectorias con datos reales. Con este trabajo se completan los dos campos principales en aprendizaje profundo, regresión y clasificación, donde se plantea el error como una función de probabilidad de pertenencia a una clase.I would like to thank the Ministry of Science and Innovation for granting me the funding with reference PRE2018-086793, associated to the project TEC2017-88048-C2-2-R, which provide me the opportunity to carry out all my PhD. activities, including completing an international research internship.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: Antonio Berlanga de Jesús.- Secretario: Daniel Arias Medina.- Vocal: Alejandro Martínez Cav

    Mitigation of nonlinear receiver effects in modern radar: advanced signal processing techniques

    Get PDF
    This thesis presents a study into nonlinearities in the radar receiver and investigates advanced digital signal processing (DSP) techniques capable of mitigating the resultant deleterious effects. The need for these mitigation techniques has become more prevalent as the use of commercial radar sensors has increased rapidly over the last decade. While advancements in low-cost radio frequency (RF) technologies have made mass-produced radar systems more feasible, they also pose a significant risk to the functionality of the sensor. One of the major compromises when employing low-cost commercial off-theshelf (COTS) components in the radar receiver is system linearity. This linearity trade-off leaves the radar susceptible to interfering signals as the RF receiver can now be driven into the weakly nonlinear regime. Radars are not designed to operate in the nonlinear regime as distortion is observed in the radar output if they do. If radars are to maintain operational performance in an RF environment that is becoming increasingly crowded, novel techniques that allow the sensor to operate in the nonlinear regime must be developed. Advanced DSP techniques offer a low-cost low-impact solution to the nonlinear receiver problem in modern radar. While there is very little work published on this topic in the radar literature, inspiration can be taken from the related field of communications where techniques have been successfully employed. It is clear from the communications literature that for any mitigation algorithm to be successful, the mechanisms driving the nonlinear distortion in the receiver must be understood in great detail. Therefore, a behavioural modelling technique capable of capturing both the nonlinear amplitude and phase effects in the radar receiver is presented before any mitigation techniques are studied. Two distinct groups of mitigation algorithms are then developed specifically for radar systems with their performance tested in the medium pulse repetition frequency (MPRF) mode of operation. The first of these is the look-up table (LUT) approach which has the benefit of being mode independent and computationally inexpensive to implement. The limitations of this communications-based technique are discussed with particular emphasis placed on its performance against receiver nonlinearities that exhibit complex nonlinear memory effects. The second group of mitigation algorithms to be developed is the forward modelling technique. While this novel technique is both mode dependent and computationally intensive to implement, it has a unique formalisation that allows it to be extended to include nonlinear memory effects in a well-defined manner. The performance of this forward modelling technique is analysed and discussed in detail. It was shown in this study that nonlinearities generated in the radar receiver can be successfully mitigated using advanced DSP techniques. For this to be the case however, the behaviour of the RF receiver must be characterised to a high degree of accuracy both in the linear and weakly nonlinear regimes. In the case where nonlinear memory effects are significant in the radar receiver, it was shown that memoryless mitigation techniques can become decorrelated drastically reducing their effectiveness. Importantly however, it was demonstrated that the LUT and forward modelling techniques can both be extended to compensate for complex nonlinear memory effects generated in the RF receiver. It was also found that the forward modelling technique dealt with the nonlinear memory effects in a far more robust manner than the LUT approach leading to a superior mitigation performance in the memory rich case

    Analysis and design of wideband voltage controlled oscillators using self-oscillating active inductors.

    Get PDF
    Voltage controlled oscillators (VCOs) are essential components of RF circuits used in transmitters and receivers as sources of carrier waves with variable frequencies. This, together with a rapid development of microelectronic circuits, led to an extensive research on integrated implementations of the oscillator circuits. One of the known approaches to oscillator design employs resonators with active inductors electronic circuits simulating the behavior of passive inductors using only transistors and capacitors. Such resonators occupy only a fraction of the silicon area necessary for a passive inductor, and thus allow to use chip area more eectively. The downsides of the active inductor approach include: power consumption and noise introduced by transistors. This thesis presents a new approach to active inductor oscillator design using selfoscillating active inductor circuits. The instability necessary to start oscillations is provided by the use of a passive RC network rather than a power consuming external circuit employed in the standard oscillator approach. As a result, total power consumption of the oscillator is improved. Although, some of the active inductors with RC circuits has been reported in the literature, there has been no attempt to utilise this technique in wideband voltage controlled oscillator design. For this reason, the dissertation presents a thorough investigation of self-oscillating active inductor circuits, providing a new set of design rules and related trade-os. This includes: a complete small signal model of the oscillator, sensitivity analysis, large signal behavior of the circuit and phase noise model. The presented theory is conrmed by extensive simulations of wideband CMOS VCO circuit for various temperatures and process variations. The obtained results prove that active inductor oscillator performance is obtained without the use of standard active compensation circuits. Finally, the concept of self-oscillating active inductor has been employed to simple and fast OOK (On-Off Keying) transmitter showing energy eciency comparable to the state of the art implementations reported in the literature
    corecore